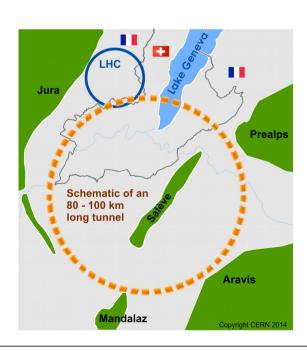

Status & Challenges of Tracker Design for FCC-hh

Zbyněk Drásal CERN

Overview


- Introduction
 - Future Circular Collider with focus on FCC-hh (pp) option
 - Physics motivation & Reference Detector Layout
- FCC-hh & Radiation Studies
- Tracker design & expected tracker performance
 - Reference tracker geometry & design driving principles
 - Granularity in R-Φ & tracking resolution
 - Implications of high pile-up & high-rate environment
 - → Pattern recognition capabilities & requirements on granularity in Z
 - → Primary vertexing in high pile-up & requirements on timing information
 - → Expected tracker occupancy & data rates
- Summary & Challenges

Future Circular Collider

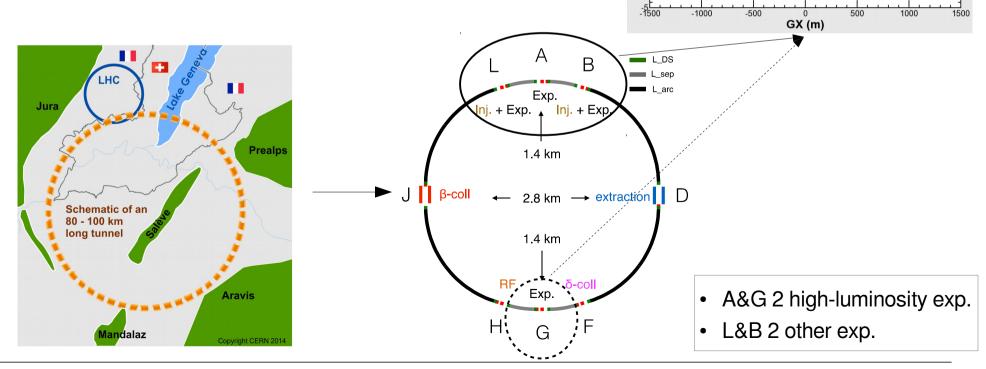
FCC machine:


- FCC-hh (pp collider): final goal defining the whole infrastructure
 - → ~ 16T magnets → 100TeV pp collider in 97.75km tunnel
- FCC-ee: as a potential first step
- FCC-eh: as an option

Future Circular Collider

FCC machine:

- FCC-hh (pp collider): final goal defining the whole infrastructure
 - → ~ 16T magnets → 100TeV pp collider in 97.75km tunnel
- FCC-ee: as a potential first step
- FCC-eh: as an option



- A&G 2 high-luminosity exp.
- L&B 2 other exp.

Future Circular Collider

FCC machine:

- FCC-hh (pp collider): final goal defining the whole infrastructure
 → ~ 16T magnets → 100TeV pp collider in 97.75km tunnel
- FCC-ee: as a potential first step
- FCC-eh: as an option

FCCee t 74 11 by2 10.sad

fcc ring roundracetrack lhc 99.983 14.3 000 ring.svy

FCC-hh

FCC-e-e-

FCC-e-

- FCC-e+

25

20

Key FCC-hh parameters

Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [1011]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

- Baseline (phase 1): 10 yrs of operation @ $L_{peak} = 5x10^{34} cm^{-2} s^{-1} \rightarrow 2.5 ab^{-1}$ per detector
- Ultimate (phase 2): 15 yrs of operation @ $L_{peak} \le 30x10^{34} cm^{-2} s^{-1} \rightarrow 15 ab^{-1}$ per detector
 - → Total: O(20)ab⁻¹ per experiment

Understanding FCC-hh parameters

Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [1011]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

14TeV \rightarrow 100 TeV $\sigma_{\text{inelastic}}$: 80mb \rightarrow 108mb average ρ_{T} : 0.6 \rightarrow 0.8 GeV/c multiplicity_{charged/unit η}: 5.4 \rightarrow 8

→ the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...

Understanding FCC-hh parameters

Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

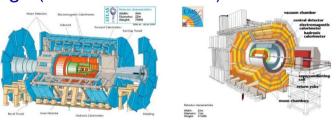
 $\begin{cases} 14\text{TeV} \rightarrow 100 \text{ TeV} \\ \sigma_{\text{inelastic}} : 80\text{mb} \rightarrow 108\text{mb} \\ \text{average p}_{\text{T}} : 0.6 \rightarrow 0.8 \text{ GeV/c} \\ \text{multiplicity}_{\text{charged/unit }\eta} : 5.4 \rightarrow 8 \end{cases}$

5x increase in pile-up wrt HL-LHC

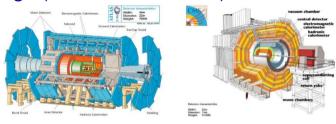
- → the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...
- → pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns) operation scheme as an option

Understanding FCC-hh parameters

Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [1011]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

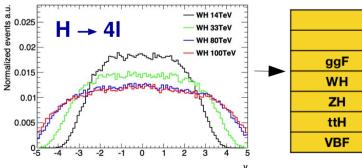

 $\sigma_{\text{inelastic}}$: 80mb → 108mb average p_T: 0.6 → 0.8 GeV/c multiplicity_{charged/unit η}: 5.4 → 8

6x increase in luminosity wrt HL-LHC

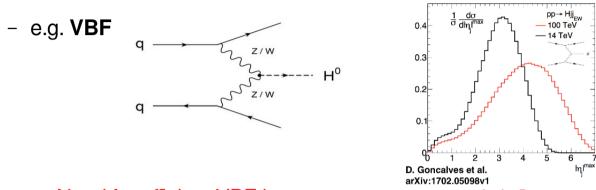

- → the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...
- → pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns) operation scheme as an option
- → FCC-hh represents an extremely high luminosity machine → expecting huge particle/data rates & significantly higher rad. level in the inner/fwd detector

- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries → precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach
 or final states are too elusive → higher mass reach, high luminosity machine & precise det. are
 the key!

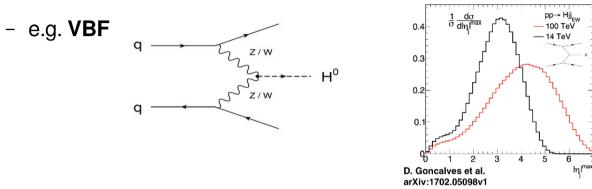
- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries → precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach or final states are too elusive → higher mass reach, high luminosity machine & precise det. are the key!
 - → either way a very general purpose detector is a way to go (as ATLAS or CMS)


- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries → precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach
 or final states are too elusive → higher mass reach, high luminosity machine & precise det. are
 the key!
 - → either way a very general purpose detector is a way to go (as ATLAS or CMS)

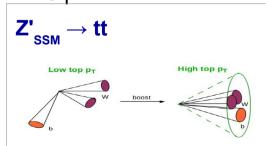
The key benchmarks: Higgs & EWSB phenomena → FCC opens us a new kinematic &


dynamical regime

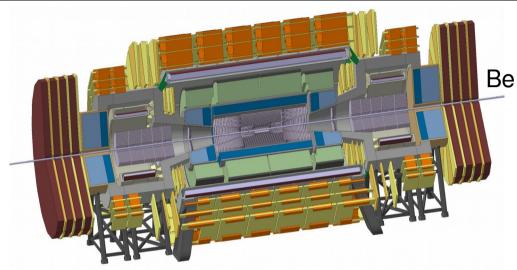
- e.g. W(H → 4I)



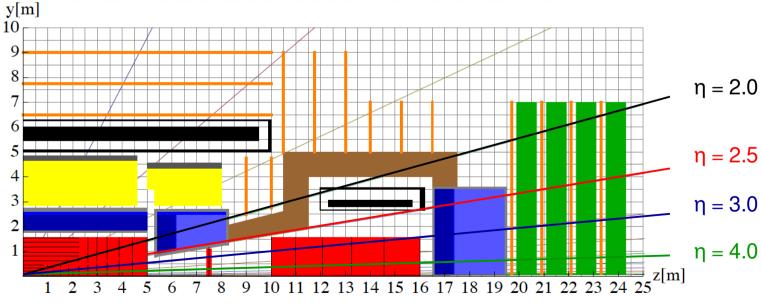
14 TeV 100 TeV 2.5 0.99 0.56 0.74 0.88 0.66 0.97 0.45 0.77 0.98 0.48 0.69 0.8 0.56 0.84 0.9 0.75 0.98 0.55

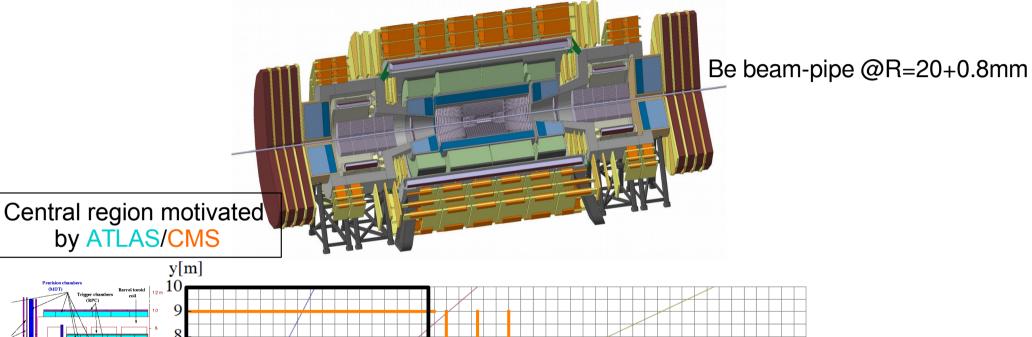

→ Need extended tracking & ECAL coverage up-to $|\eta|$ ~4 (c.f. $|\eta|$ ~2.5 for LHC exp.)

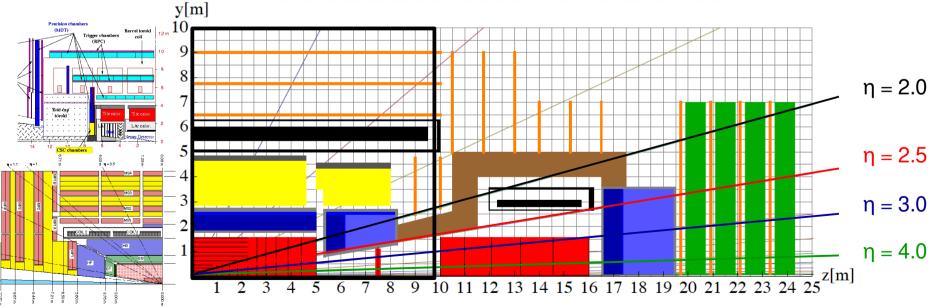
→ Need for efficient VBF jet measurement **up-to** |**η**|~6

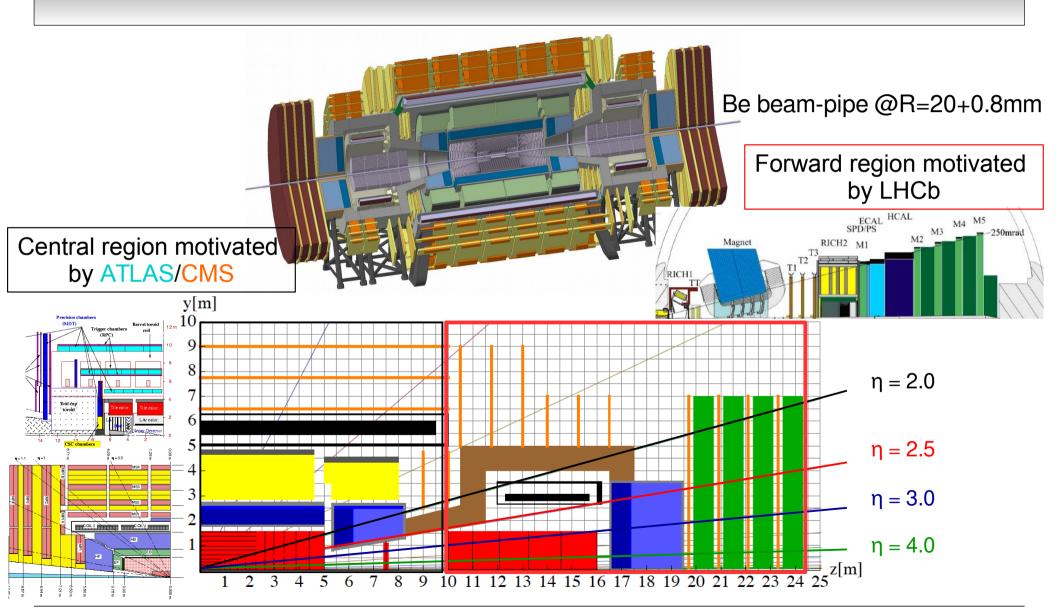


- Need for efficient VBF jet measurement up-to |η|~6
- FCC immensely increases the mass reach \sim E/14TeV (by factor of 5-7 increase, depending on L $_{integr.}$)
 - e.g. $Z' \rightarrow \mu\mu$ or $Z' \rightarrow tt$
 - → Need for high p_T resolution ~10-20% @ 10TeV (cf. LHC: 10% @1TeV), but keep sensitivity to low p_T tracks

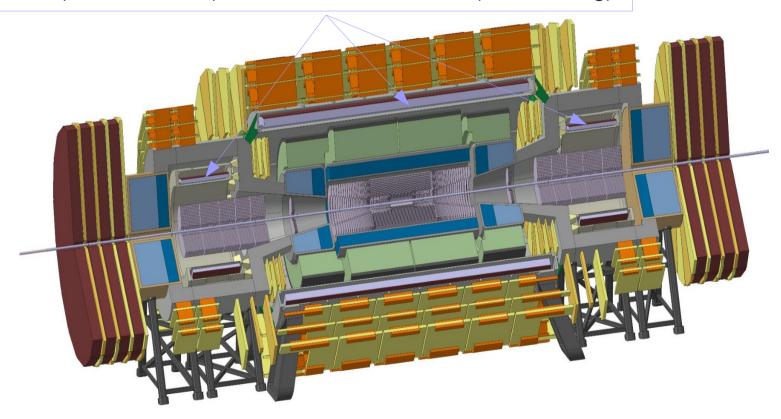


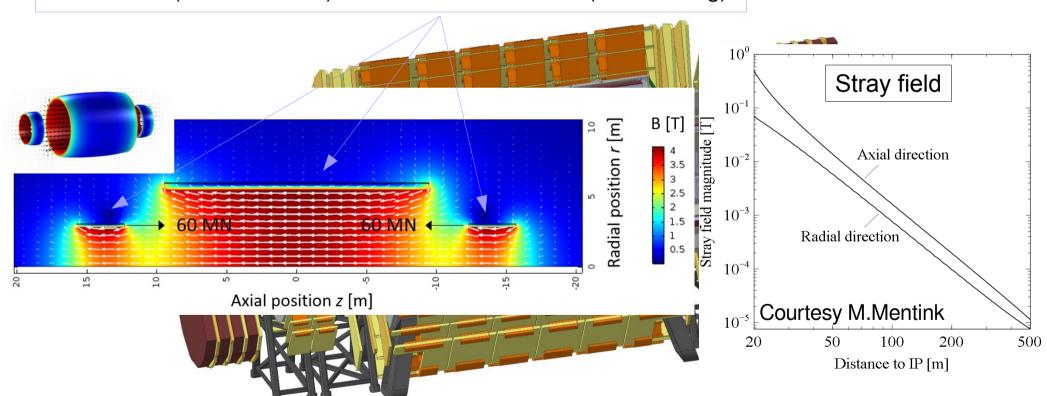

Expected highly-collimated final states – boosted decay products (min distance between 2 partons \sim m/p $_{_{\rm T}}$)


→ High Tracker, E/HCAL granularity essential to resolve jet-substructure (E/HCAL), reject bkg,...

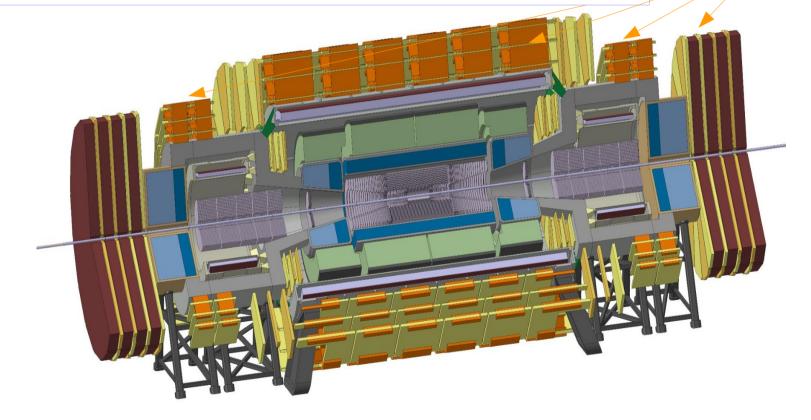


Be beam-pipe @R=20+0.8mm

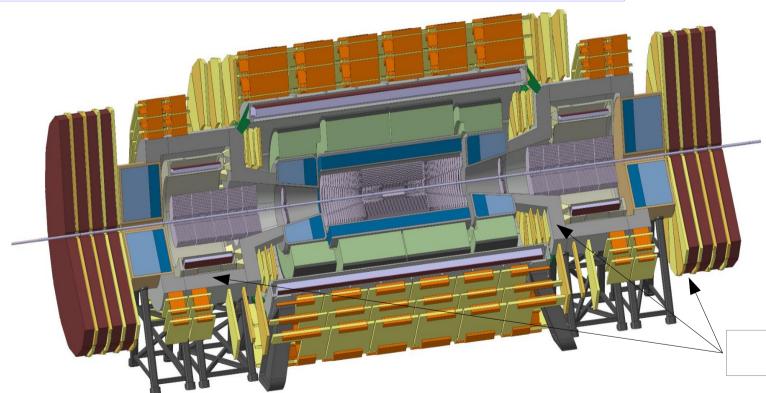




4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

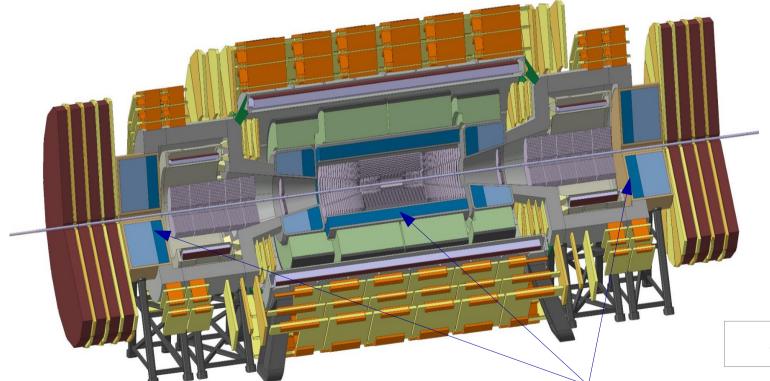


4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)


Muon system

4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

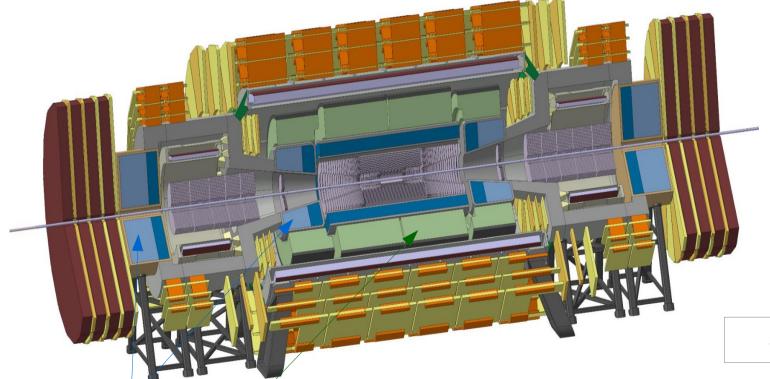
Muon system


4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

Shielding

Muon system

4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

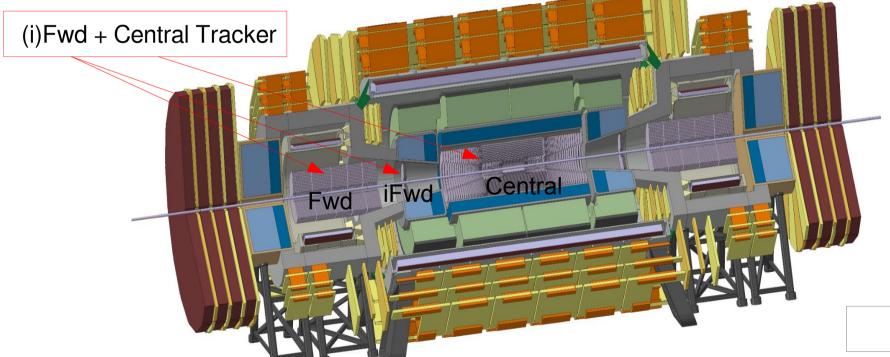


Shielding

Electromag. Calorimeter (Pb/LAr)

Muon system

4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)


Shielding

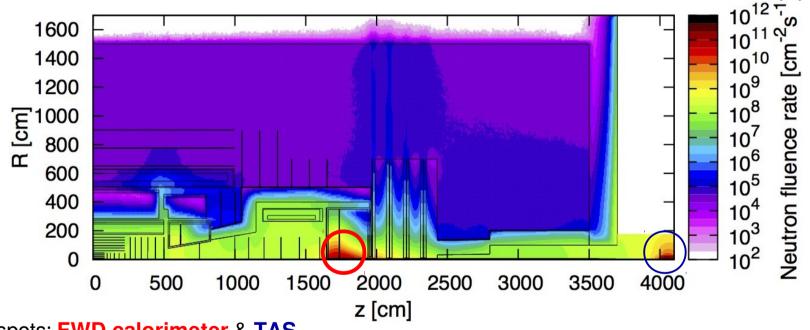
Hadr. Calorimeter Fwd (Pb/LAr), BRL(Fe/Sci)

Electromag. Calorimeter (Pb/LAr)

Muon system

4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

Shielding

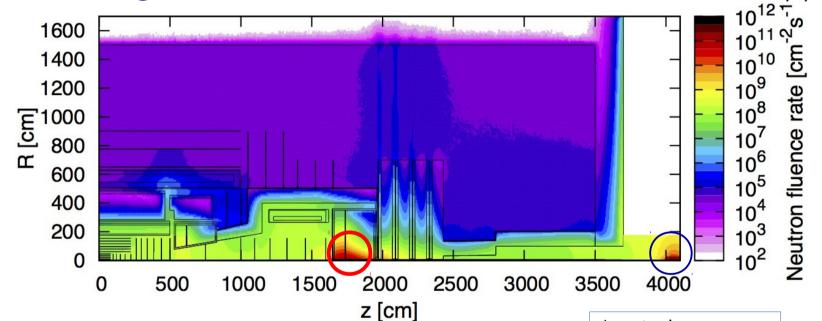

Hadr. Calorimeter Fwd (Pb/LAr), BRL(Fe/Sci)

Electromag. Calorimeter (Pb/LAr)

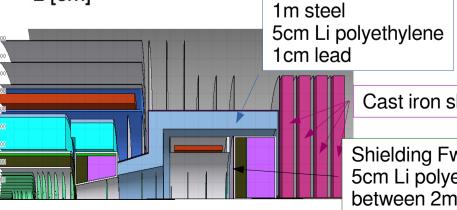
FCC-hh & Radiation Rates?

Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹

Courtesy of M.I.Besana



→ 2 main hot spots: FWD calorimeter & TAS

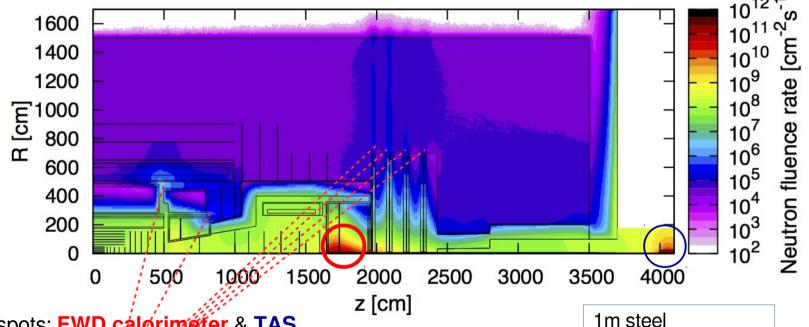

FCC-hh & Radiation Rates?

Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹

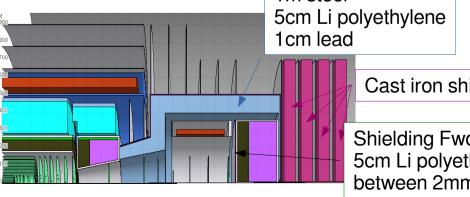
Courtesy of M.I.Besana

- → 2 main hot spots: FWD calorimeter & TAS
- → Shielding scheme effective, **but...**

Cast iron shielding

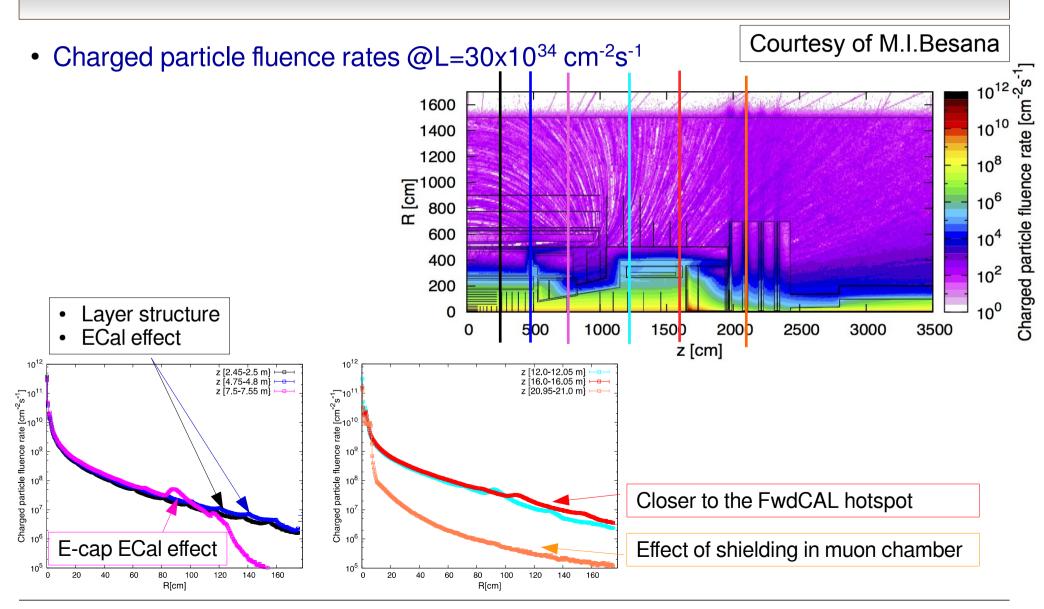

Shielding FwdCAL: 5cm Li polyethylene between 2mm Al

26

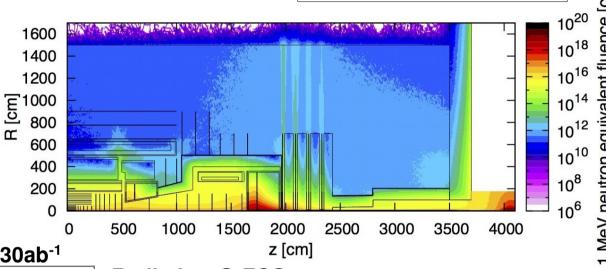

FCC-hh & Radiation Rates?

Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹

Courtesy of M.I.Besana


- → 2 main hot spots: FWD calorimeter & TAS
- → Shielding scheme effective but...
- → Several leakage channels appear due to service channels etc.

Cast iron shielding


Shielding FwdCAL: 5cm Li polyethylene between 2mm Al

Radiation Rates in Tracker

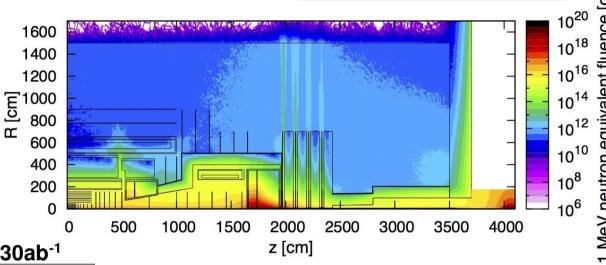
Tracker & Long-term Damage after 30ab⁻¹

• 1 MeV neq fluence after 30ab⁻¹

Long-term damage for Tracker after 30ab⁻¹

z[m]	Dose [MGy]	Make and the Florence Femals
	2 000 [may]	1 MeV equivalent Fluence [cm ⁻²]
0	320	5.5 10 ¹⁷
0	88	1.25 10 ¹⁷
0	40	6 1016
0	23	3.3 10 ¹⁶
0	8.8	1.51 10 ¹⁶
0	0.65	3.2 10 ¹⁵
5	410	3.7 10 ¹⁷
16	250	2 10 ¹⁷
	0 0 0 0 0	0 88 0 40 0 23 0 8.8 0 0.65 5 410

Radiation @ FCC:


—➤ @R=25mm: ~6x10¹⁷ neq cm⁻² ,TID~0.4GGy

Courtesy of M.I.Besana

- LHC = 1
- HL-LHC → 20x LHC
- FCC → 600x LHC

Tracker & Long-term Damage after 30ab⁻¹

• 1 MeV neq fluence after 30ab⁻¹

Long-term damage for Tracker after 30ab⁻¹

Long term damage for fraction after bods					
R [mm]	z[m]	Dose [MGy]	1 MeV equivalent Fluence [cm ⁻²]		
25	0	320	5.5 10 ¹⁷		
60	0	88	1.25 10 ¹⁷		
100	0	40	6 1016		
150	0	23	3.3 1016		
270	0	8.8	1.51 10 ¹⁶		
900	0	0.65	3.2 10 ¹⁵		
25	5	410	3.7 10 ¹⁷		
50	16	250	2 10 ¹⁷		

Radiation @ FCC:

—➤ @R=25mm: ~6x10¹⁷ neq cm⁻² ,TID~0.4GGy

Courtesy of M.I.Besana

• LHC = 1

HL-LHC → 20x LHC

• FCC → 600x LHC

HL-LHC rad. tolerance limit @R~270mm

Tracker Layout & Design Driving Principles

- Key tracker parameters:
 - **Granularity in R-Φ** → driven by requirement on dp_{τ}/p_{τ} res.

$$\frac{\Delta p_{\mathrm{T}}}{p_{\mathrm{T}}} = \frac{\sigma[\mathrm{m}] p_{\mathrm{T}} [\mathrm{GeV/c}]}{0.3 B[\mathrm{T}] L^{2}[\mathrm{m}^{2}]} f(N)$$

L: 1.55m
B: 4T
$$\sigma_{R-\Phi}$$
: 10(7.5)um
 N_{layers} : 12 ~ 20% @ 10TeV/c

Tracker Layout & Design Driving Principles

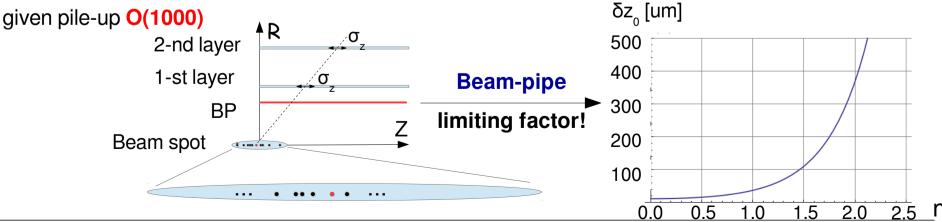
- Key tracker parameters:
 - Granularity in R-Φ → driven by requirement on dp₊/p₊ res.

$$\frac{\Delta p_{\rm T}}{p_{\rm T}} = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N)$$
L: 1.55m
B: 4T
$$\sigma_{\rm R-\Phi} : 10(7.5) \text{um}$$

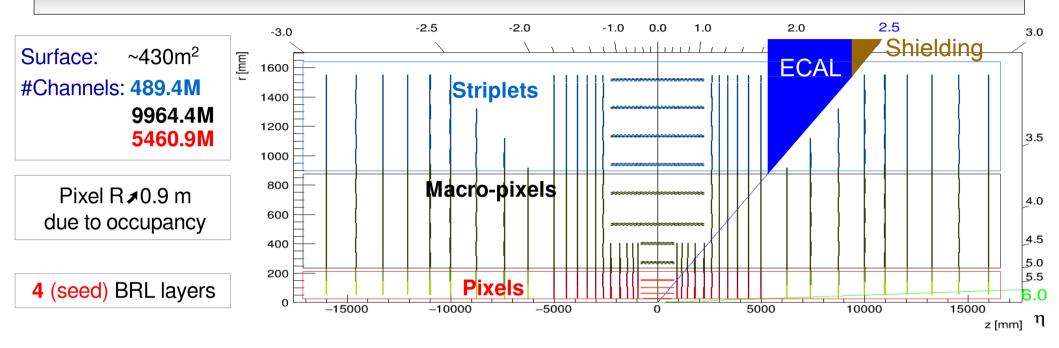
$$N_{\rm lavers} : 12$$

- **Number of layers N** → driven by dp_{T}/p_{T} res. & pattern recognition capabilities Note: res. improves as $1/\sqrt{N}_{layers}$, but material budget (MB) increases as N_{layers}

Low MB Important!


Tracker Layout & Design Driving Principles

- Key tracker parameters:
 - Granularity in R-Φ → driven by requirement on dp_{$_{T}$}/p_{$_{T}$} res. & occupancy limit (~1%)

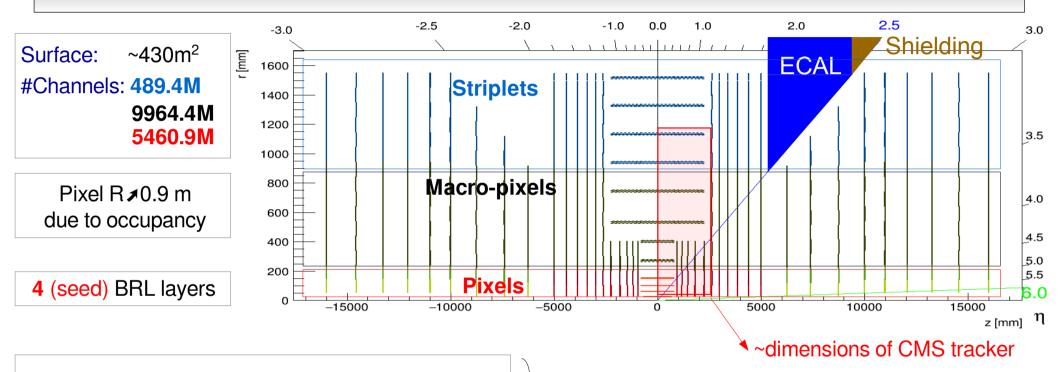

$$\frac{\Delta p_{\rm T}}{p_{\rm T}} = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm m}]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm m}]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm m}]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm m}]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm m}]} \, f(N) \\
 = \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm m}]}{0.3 \, B[{\rm m}$$

Low MB Important!

- Granularity in Z → driven by pattern recognition capabilities, occupancy limit & primary vertexing in

Reference Tracker Layout (v3.03)

Pixels: 25x50um² (1-4th BRL layers, EC R1),


100/3x100um² (R2), 100/3x400um² (R3,R4)

Macro-pixels: 100/3x400um²

Strips : 100/3umx50mm (BRL),

100/3umx10mm (EC)

Reference Tracker Layout (v3.03)

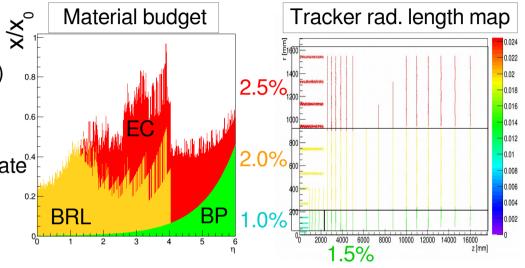
Pixels: 25x50um² (1-4th BRL layers, EC R1),

100/3x100um² (R2), 100/3x400um² (R3,R4)

Macro-pixels: 100/3x400um²

Strips : 100/3umx50mm (BRL),

100/3umx10mm (EC)


Huge increase in #pixel channels wrt LHC experiments due to requirements on tracking up to η=6 & resilience to high rad. levels generated by FCC-hh!

Material Budget & Tracking Resolution

A simplified model for MB assumed:

x/x0 ~1-2.5% per layer (services accumul. effect)
 (20% Si, 42% C, 2% Cu, 6% Al, 30% Plastic)

→ technology input needed for more real. estimate^{0.4}

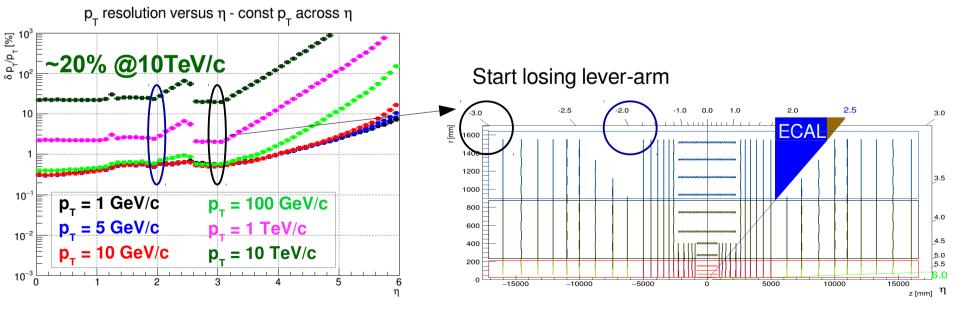
Material Budget & Tracking Resolution

Material budget

2.5%

2.0%

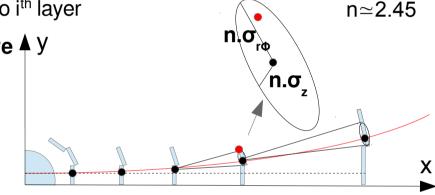
.0%


BP

A simplified model for MB assumed:

x/x0 ~1-2.5% per layer (services accumul. effect)
 (20% Si, 42% C, 2% Cu, 6% Al, 30% Plastic)

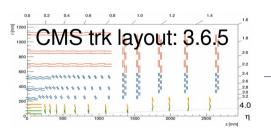
→ technology input needed for more real. estimate^{0.4}


Tracker rad. length map

Pattern recognition (PR) Capabilities

Granularity in Z strongly affects pattern recognition capabilities, so how to study PR analytically? Strategy: study "weak" spots in layout!
 @ 95% conf. level

$$p = 1 - \prod_{i=4}^{N} (1 - p_{\text{bkg95\%}}^{i})$$



Pattern recognition (PR) Capabilities

- Granularity in Z strongly affects pattern recognition capabilities, so how to study PR analytically? Strategy: study "weak" spots in layout!
 - \rightarrow Assume **perfect seeding** (triplet) \rightarrow propagate $\sigma_{r\phi}$, σ_z to ith layer
 - → Calculate probability p to mis-match a real hit anywhere on the track with a bkg hit @95% CL in PU=1000

$$p = 1 - \prod_{i=4}^{N} (1 - p_{\text{bkg95\%}}^{i})$$

How to "qualitatively" interpret p?
 c.f. CMS Ph2 layout @PU~140...

(1-p) ~ 80% 0.8

0.6

0.4

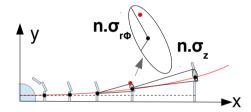
0.2

(1-p) versus η

p_ options (InOut+IP, full TRK):

tkLavout

PU=140


CMS Preliminary Phase-2 Simulation 14 TeV

CMS DP-2017/010

→ To keep similar PR for FCChh @PU~1000, set bkg. prob. contamination p @20%

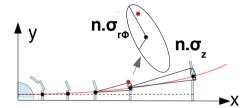
Understanding Track Propagator in Pattern Recognition

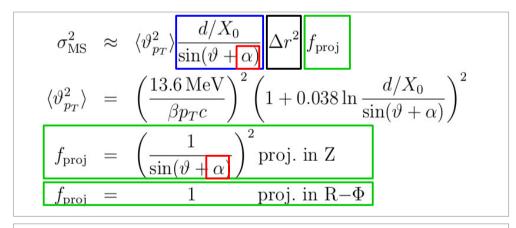
- 4 key parameters affecting propagation of error ellipse:
 - \rightarrow Multiple scattering & material effect @ 9 (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - → Detector resolution

$$\sigma_{\text{MS}}^{2} \approx \langle \vartheta_{p_{T}}^{2} \rangle \frac{d/X_{0}}{\sin(\vartheta + \alpha)} \Delta r^{2} f_{\text{proj}}$$

$$\langle \vartheta_{p_{T}}^{2} \rangle = \left(\frac{13.6 \,\text{MeV}}{\beta p_{T} c}\right)^{2} \left(1 + 0.038 \ln \frac{d/X_{0}}{\sin(\vartheta + \alpha)}\right)^{2}$$

$$f_{\text{proj}} = \left(\frac{1}{\sin(\vartheta + \alpha)}\right)^{2} \text{proj. in Z}$$

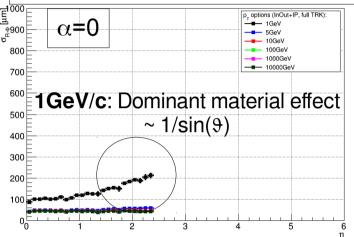

$$f_{\text{proj}} = 1 \quad \text{proj. in R} -\Phi$$

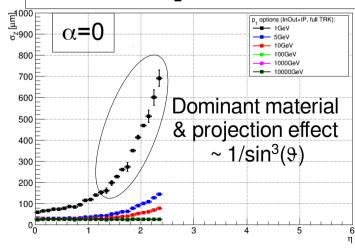

$$\begin{array}{rcl} \sigma_{R\Phi} & = & \sqrt{\sigma_{R\Phi_{\mathrm{loc}}}^2 + (A/\sqrt{1-A^2} \sin \alpha)^2 \sigma_{Z_{\mathrm{loc}}}^2} \\ A & = & \Delta r/2R \end{array}$$

40

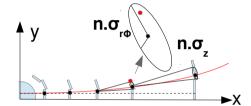
Understanding Track Propagator in Pattern Recognition

- 4 key parameters affecting propagation of error ellipse:
 - \rightarrow Multiple scattering & material effect @ ϑ (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - → Detector resolution




$$\sigma_{R\Phi} = \sqrt{\sigma_{R\Phi_{loc}}^2 + (A/\sqrt{1 - A^2} \sin \alpha)^2 \sigma_{Z_{loc}}^2}$$

$$A = \Delta r/2R$$



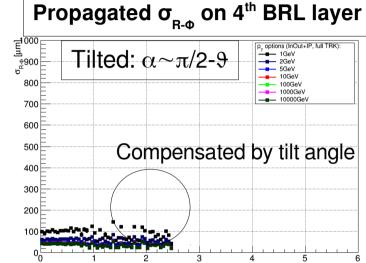
Propagated σ_{7} on 4th BRL layer

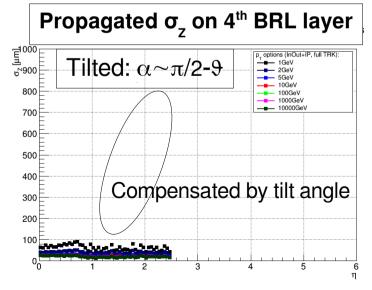
Understanding Track Propagator in Pattern Recognition

- 4 key parameters affecting propagation of error ellipse:
 - \rightarrow Multiple scattering & material effect @ ϑ (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - → Detector resolution

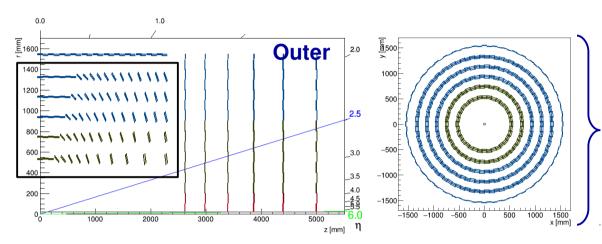
$$\sigma_{\text{MS}}^{2} \approx \langle \vartheta_{p_{T}}^{2} \rangle \frac{d/X_{0}}{\sin(\vartheta + \alpha)} \Delta r^{2} f_{\text{proj}}$$

$$\langle \vartheta_{p_{T}}^{2} \rangle = \left(\frac{13.6 \,\text{MeV}}{\beta p_{T} c}\right)^{2} \left(1 + 0.038 \ln \frac{d/X_{0}}{\sin(\vartheta + \alpha)}\right)^{2}$$

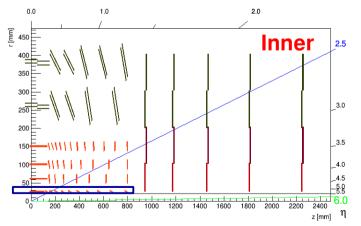

$$f_{\text{proj}} = \left(\frac{1}{\sin(\vartheta + \alpha)}\right)^{2} \text{proj. in Z}$$

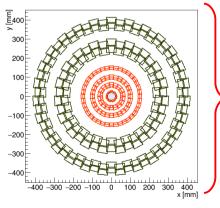

$$f_{\text{proj}} = 1 \quad \text{proj. in R} -\Phi$$

$$\sigma_{R\Phi} = \sqrt{\sigma_{R\Phi_{loc}}^2 + (A/\sqrt{1 - A^2} \sin \alpha)^2 \sigma_{Z_{loc}}^2}$$


$$A = \Delta r/2R$$

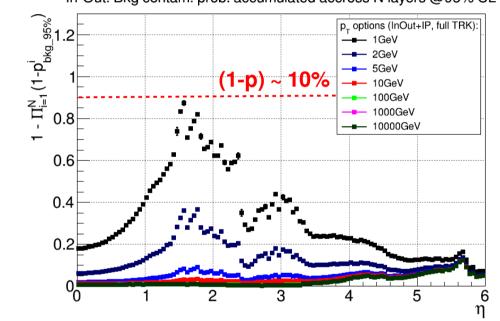
To min. mat. effects, tracker in tilted layout advantageous!





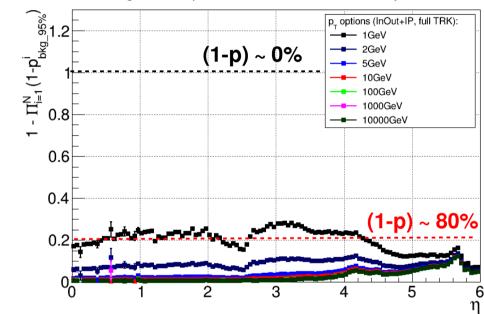
Tilted Geometry: Design Proposal v4.01

- Tilted layout of outer tracker driven by requirement to achieve ~0.2 bkg. contam. level (BCL) in PR:
 - uppermost layer designed non-tilted to keep the highest possible lever-arm
 - modules positioned to hermetically cover full luminous region ±75mm
 - → ECs strips res. in Z needed to be set to ~500um (~1mm OK)

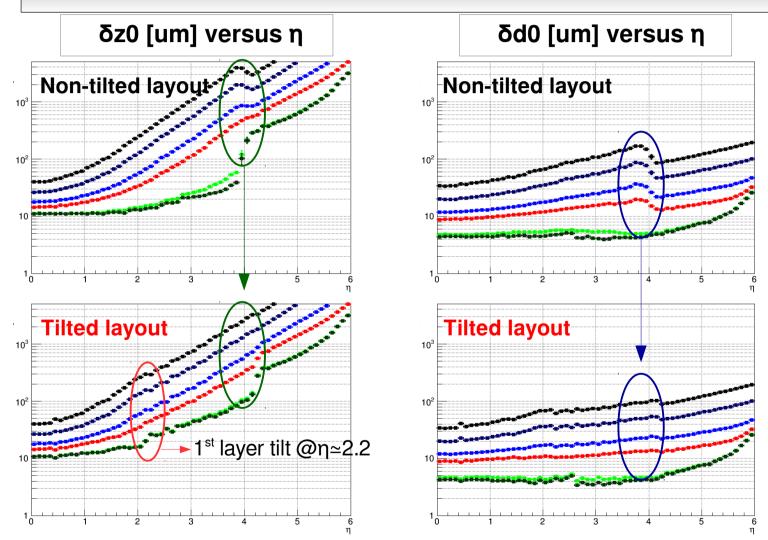


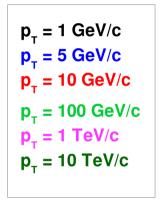
- Tilted layout of inner tracker driven by ~0.2
 BCL in PR & highest achievable z0 res.
 (to deal with primary vertexing @PU~1000):
 - → tilt angle of 1st layer: θ_{tilt} ≈ 10° optimized to achieve a compromise between low MB & higher radial position

Tilted Layout & Pattern Recognition

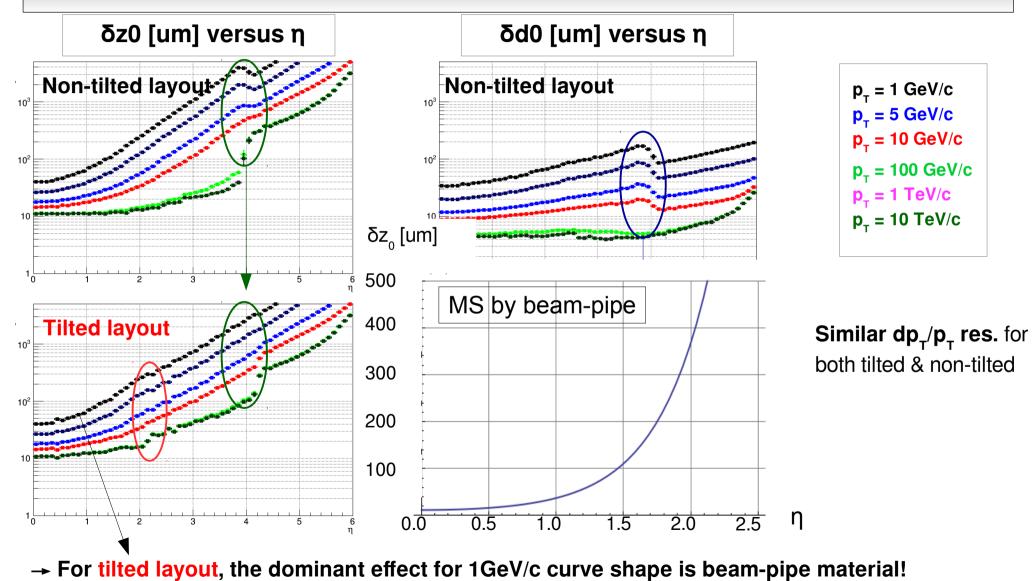

Non-tilted layout v3.03: in→out approach

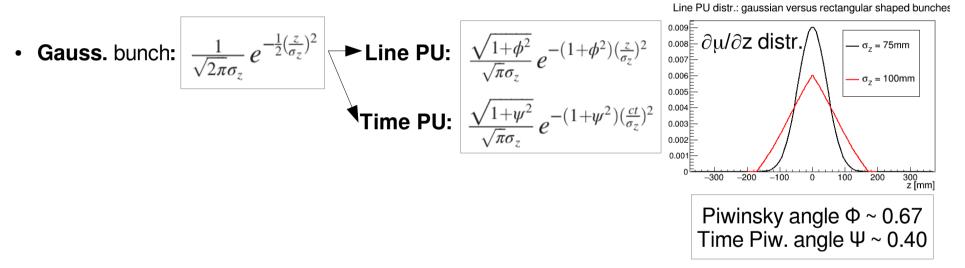
In-Out: Bkg contam. prob. accumulated accross N layers @95% CL


Tilted layout v4.01: in→out approach

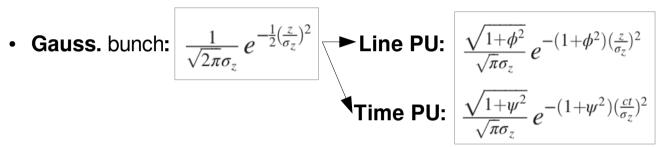

In-Out: Bkg contam. prob. accumulated accross N layers @95% CL

- → With tilted layout the bkg. contam. level @~20% achievable in PU~1000 for p_T=1GeV/c (limit value driven by HL-LHC scenario with PU~140 & CMS Phase 2 upgrade tracker layout)
- → Limits: Mat. budget assumed per module → NOT fully realistic tilted design → need to consider realistic engineering with services, cooling & support structure (technology input necessary)!

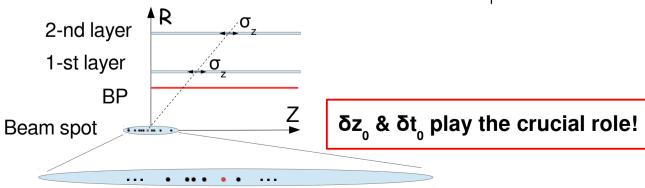

Tilted Layout: Improvement in Tracking Performance



Similar dp_T/**p**_T res. for both tilted & non-tilted


Tilted Layout: Improvement in Tracking Performance

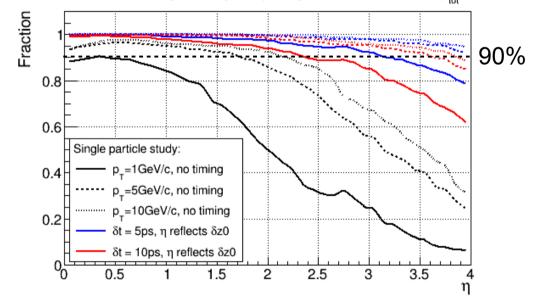
- How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate **1000 PU** vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)



- How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate **1000 PU** vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

Line PU distr.: gaussian versus rectangular shaped bunches $0.009 = 0.008 \quad \partial \mu / \partial z \text{ distr.}$ $0.007 = 0.006 \quad \partial \mu / \partial z \text{ distr.}$ $0.007 = 0.006 \quad \partial \mu / \partial z \text{ distr.}$ $0.004 = 0.003 \quad \partial z \text{ mm}$

→ Study what fraction of tracks may be unambiguously assigned to the primary vertex @ 95% CL? Use 2D info (PV assumed to be "precisely" found from e.g. high p_⊤ tracks)



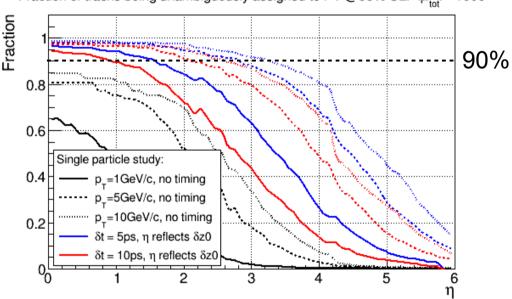
Piwinsky angle $\Phi \sim 0.67$ Time Piw. angle $\Psi \sim 0.40$

→ Compare FCC-hh scenario to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

HL-LHC scenario @ PU=140 CMS Ph2 Upgr. tracker

Fraction of tracks being unambiguously assigned to PV @95% CL: $<\mu_{tot}>=140$

→ Compare FCC-hh scenario to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

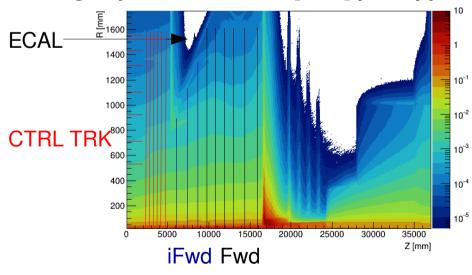

HL-LHC scenario @ PU=140 CMS Ph2 Upgr. tracker

Fraction of tracks being unambiguously assigned to PV @95% CL: $\langle \mu_{tot} \rangle = 140$

Fraction 90% 0.8 Single particle study: p_=1GeV/c, no timing p_=5GeV/c, no timing p_=10GeV/c, no timing $\delta t = 5ps$, η reflects $\delta z0$ $\delta t = 10 ps$, η reflects $\delta z 0$ 3 0.5 1.5 2.5 3.5

FCC-hh scenario @ PU=1000 **Tilted layout**

Fraction of tracks being unambiguously assigned to PV @95% CL: <µ_,>=1000



- → @PU~1000 avg. distance between vertices (Φ~0.67) ~110um @z=0m, hence the error due to mult. scattering in beam-pipe is for $\eta > 1.5$ already larger than the avg. vertex distance \rightarrow timing essential
- → With current FCC-hh scheme & need for eta coverage up-to 6 the primary vertexing @ PU~1000 seems very difficult for $\eta>4.0$, even with timing res. ~5ps (several time measur. per track)

Occupancy & Expected Data Rates @ PU=1000

- Have a look at the tracker granularity in a view of hit occupancy (~ <1%), what data rates
 may we expect at PU~1000?
 - → Use Fluka simulated charged particles fluence per pp collision [cm⁻²] scaled by 1000 PUs
 - → Calculate occupancy & hit rates for 2 scenarios:
 - Non-triggered data @ f = 40MHz
 - Triggered data @ f ~ 1MHz (given ~ by hardware limits, e.g. FPGA)
 - Assume binary read-out (spars. read-out scheme)

Charged particles fluence [cm⁻²] per 1 pp collision

Inner: Occupancy & Expected Data Rates

Layer no :	1	2	3	4	5	6	Total [TB/s]	Ī
Radius [mm] :	25.0	60.0	100.0	150.0	270.0	400.0		
Module max occupancy (max[sen1,sen2])[%]:	0.45	0.11	0.05	0.02	0.08	0.04		→ Hit occupancy [%] (~ <1%)
#Hit-channels per module per BX :	2694	741	333	166	314	150		, , ,
Module avg occupancy (max[sen1,sen2])[%]:	0.38	0.09	0.04	0.02	0.08	0.04		
Module bandwidth/(addr+clsWidth=2b[b]:	22	22	22	22	21	21		
Mod. bandwidth(#chnls*(addr+clsWidth)[kb]:	57.88	15.93	7.16	3.57	6.44	3.08		
Mod. bandwidth (matrix*1b/channel) [kb] :	685.00	820.00	820.00	820.0	0 384.00	384.00	0	
Data rate per layer - 40MHz,spars [Tb/s]:	603.7	379.9	277.3	202.2	138.7	97.5	212.4	→ Layer data rate (40MHz)
Data rate per layer - 1MHz, spars [Tb/s]:	15.1	9.5	6.9	5.1	3.5	2.4	5.3	→ Layer data rate (1MHz, trigger)
Data rate per ladder - 40Mhz,spars [Gb/s] :	44159	7 24313.	2 10920.	7 5449.	3 4177.1	1996.	5	,9 9,
Data rate per ladder - 1Mhz,spars [Gb/s] :	1104.0	607.8	273.0	136.2	104.4	49.9		
Data rate per module - 40Mhz,spars [Gb/s]:	2207.9	9 607.83	273.02	136.2	3 245.71	117.4	4	
Data rate per module - 1Mhz,spars [Gb/s]:	55.20	15.20	6.83	3.41	6.14	2.94		
Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 251.82	57.91	26.01	12.98	4.69	2.24		→ Data rate per cm ² (40MHz)
Data rate per cm^2 - 1Mhz,spars [Gb/s/cm^2]	: 6.30	1.45	0.65	0.32	0.12	0.06		→ Data rate per cm² (1MHz, trigge
				ALFORDER				- ж. т.
	Ch	alleng	e: 6.3	Gb/s	/cm ²			
Ring no :	1	2 3	3 4	t To	tal [TB/	s]		
Average radius [mm]:	64.8	153.0 2	251.1 3	53.3				
Module max occupancy (max[sen1,sen2])[%]:	0.46			0.08		ſ	Fydys :::	a data flavor a 400b la les a del
Data rate per ringLayer-40MHz,spars [Tb/s]:					5.2	7 I	⊏xtrem	ie data flows >>10Gb/s/modul
Data rate per ringLayer- 1MHz,spars [Tb/s]:				.9 1.				(even triggered @ 1MHz)
Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]	64.44	15.67	5.62 3	3.42		_		
Data rate per cm^2 - 1Mhz,spars [Gb/s/cm^2]:		100		0.09		\blacksquare		

Challenge: 1.6 Gb/s/cm²

Outer & Fwd: Occupancy & Data Rates

→ Expected huge tracker data rates: 766 TB/s (untriggered), 19 TB/s (triggered @ 1MHz)

Layer no:	Outor	1	2	3	4	5	6 T	otal [TB/	s]								
Radius [mm]:	Outer:	530.0	742.4	937.2	1132.0	1326.7	1539.5										
Module max occupancy	(max[sen1,sen2])[%]:	0.02	0.01	0.75	0.43	0.27	0.21										
Data rate per layer - 4	OMHz, spars [Tb/s]:	226.0	134.5	63.6	43.9	31.7	28.1 6	6.0	7								
Data rate per layer - 1	MHz,spars [Tb/s]:	5.6	3.4	1.6	1.1	0.8	0.7 1	.6									
Data rate per cm^2 -	40Mhz, spars [Gb/s/cm^2	2]: 1.38	0.61	0.23	0.13	0.08	0.06		_								
Data rate per cm^2 -	1Mhz,spars [Gb/s/cm^2]]: 0.03	0.02	0.01	0.00	0.00	0.00										
Ring no:		1	2	3	4 !	5 6	7	8	9	10	11	12	13	14	15	16	Total [TB/s]
Average radius [mm] :		64.6	151.5	251.0	352.0	151.6 5	53.6 65	1.1 753.	6 850.8	953.5	1049.	7 1152.6	6 1247.0	6 1350.	8 1444.	7 1522.	8
Module max occupancy	(max[sen1,sen2])[%]:	0.58	0.15	0.21	0.10	0.06 0	.04 0.0	0.02	0.01	0.23	0.20	0.13	0.12	0.08	0.08	0.05	
Data rate per ringLayer	-40MHz,spars [Tb/s]:	263.8	213.3	153.4	109.8	93.2 6	3.1 63.	8 49.9	42.5	28.5	21.9	19.2	15.7	13.8	11.4	4.6	146.0
Data rate per ringLayer	- 1MHz,spars [Tb/s]:	6.6	5.3	3.8	2.7	2.3 1	.6 1.6	1.2	1.1	0.7	0.5	0.5	0.4	0.3	0.3	0.1	3.6
Data rate per cm^2 - 4	40Mhz,spars [Gb/s/cm^2]:	71.30	18.72	7.98	4.18	2.65 1	.54 1.1	8 0.78	0.62	0.36	0.26	0.21	0.15	0.13	0.10	0.08	
Data rate per cm^2 - '	1Mhz,spars [Gb/s/cm^2]:	1.78	0.47	0.20	0.10	0.07 0	.04 0.0	0.02	0.02	0.01	0.01	0.01	0.00	0.00	0.00	0.00	
Ring no:	iFWD:	1	2	3	4	5	6	7	8	9	10	11	12	13	Tota	al [TB/s]
Average radius [mm]:	IF VVD.	72.8	167.5	266.	5 366	.3 464	4.9 564	8 664.6	766.8	866.7	969.0	1068.	.4 1170	.9 1269	8.6		
Module max occupancy	/ (max[sen1,sen2])[%]:	0.99	0.13	0.20	0.1	1 0.0	0.0	4 0.03	0.02	0.02	0.48	0.24	0.12	0.0	7		
Data rate per ringLaye	er-40MHz, spars [Tb/s]:	165.8	114.	5 81.6	64.	9 50	.6 39.	3 42.3	30.0	43.3	16.8	7.8	2.8	1.9	82.	.7	
Data rate per ringLaye	er- 1MHz,spars [Tb/s]:	4.1	2.9	2.0	1.6	1.	3 1.0	1.1	0.8	1.1	0.4	0.2	0.1	0.0	2.1		
Data rate per cm^2 -	40Mhz,spars [Gb/s/cm^	2]: 65.73	18.1	7 8.18	4.7	5 2.	92 1.8	7 1.44	0.94	1.18	0.64	0.27	0.18	8 0.1	1		•
Data rate per cm^2 -	1Mhz,spars [Gb/s/cm^2]: 1.64	0.45	0.20	0.1	2 0.	0.0	5 0.04	0.02	0.03	0.02	0.01	0.00	0.0	0		
Ring no:	FWD:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total [TB/s]
Average radius [mm]:	I VVD.	97.1	190.1	288.9	388.3	487.	1 588.6	689.4	791.4	891.9	994.1	1094.4	1196.6	1296.6	1398.	8 1498.	5
Module max occupancy		0.28	0.11	0.20	0.12	0.08	0.05	0.04	0.03				0.25	0.16	0.11	0.09	
Data rate per ringLaye		318.3	244.3	180.2	149.6				77.1	76.7	54.9		25.6	19.5	15.2	11.0	193.4
Data rate per ringLaye		8.0	6.1	4.5	3.7	3.0	2.9	2.5	1.9	1.9	1.4	0.9	0.6	0.5	0.4	0.3	4.8
Data rate per cm^2 -	40Mhz,spars [Gb/s/cm^2]: 48.67	17.20	8.37	5.17	3.35	2.37	1.71	1.21			0.40	0.26	0.19	0.13	0.09	
Data rate per cm^2 -	1Mhz,spars [Gb/s/cm^2]:	1.22	0.43	0.21	0.13	0.08	0.06	0.04	0.03	0.03	0.02	0.01	0.01	0.00	0.00	0.00	

Summary & Challenges

- The key tracker parameters have been studied & optimized:
 - → Current layout: ~430m² (391m² in tilted layout) of Si with #channels: 5461M (pixels), 9964M (macro-pixels), 489M (strips)
 - → The granularity in R-Φ driven mostly by dp₊/p₊ @p₊=10TeV/c → achieved dp₊/p₊ ~20%
 - → The granularity in Z driven by prim. vertexing & pattern recognition capabilities @PU=1000:
 - Due to minimized material budget tracker in tilted layout very advantageous (even for the vertex detector) to achieve similar pattern recognition performance as with PU~140 & HL-LHC conditions
 → realistic engineering (technology input) with services, cooling & support structure important!
 - Primary vertexing & correct PV assignment @PU=1000 seems feasible up-to η~4, but only
 with precise timing information σ_t~10ns (2D vertexing) → the limiting factor for high η coverage is
 beam-pipe material
 - → Expected data rates (**766 TB**/s untriggered, **19 TB**/s triggered @**1MHz**) implicate need for new read-out technologies (high speed, low power optical links) & dedicated trigger design!
 - → Expected 1MeV neq fluence ~5x10¹⁷cm⁻² & TID ~0.4GGy @ R=25mm (up to R~270mm) represent new challenges for the tracker (vertex detector) technologies

Summary & Challenges

- The key tracker parameters have been studied & optimized:
 - → Current layout: ~430m² (391m² in tilted layout) of Si with #channels: 5461M (pixels), 9964M (macro-pixels), 489M (strips)
 - → The granularity in R-Φ driven mostly by dp₊/p₊ @p₊=10TeV/c → achieved dp₊/p₊ ~20%
 - → The granularity in Z driven by prim. vertexing & pattern recognition capabilities @PU=1000:
 - Due to minimized material budget tracker in tilted layout very advantageous (even for the vertex detector) to achieve similar pattern recognition performance as with PU~140 & HL-LHC conditions
 → realistic engineering (technology input) with services, cooling & support structure important!
 - Primary vertexing & correct PV assignment @PU=1000 seems feasible up-to η~4, but only
 with precise timing information σ_t~10ns (2D vertexing) → the limiting factor for high η coverage is
 beam-pipe material
 - → Expected data rates (**766 TB**/s untriggered, **19 TB**/s triggered @**1MHz**) implicate need for new read-out technologies (high speed, low power optical links) & dedicated trigger design!
 - → Expected 1MeV neq fluence ~5x10¹⁷cm⁻² & TID ~0.4GGy @ R=25mm (up to R~270mm) represent new challenges for the tracker (vertex detector) technologies
 - → Dedicated R&D is a key to success!