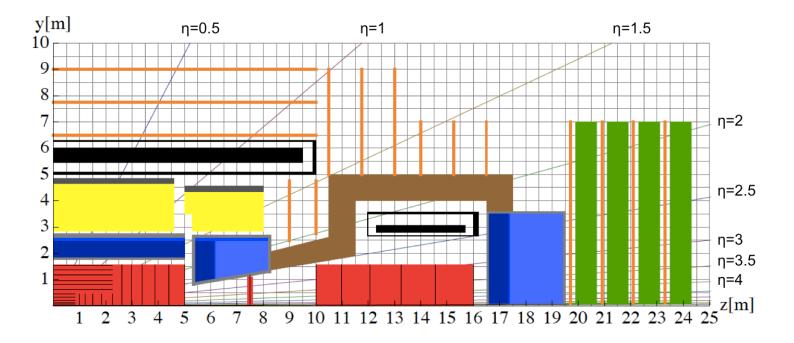
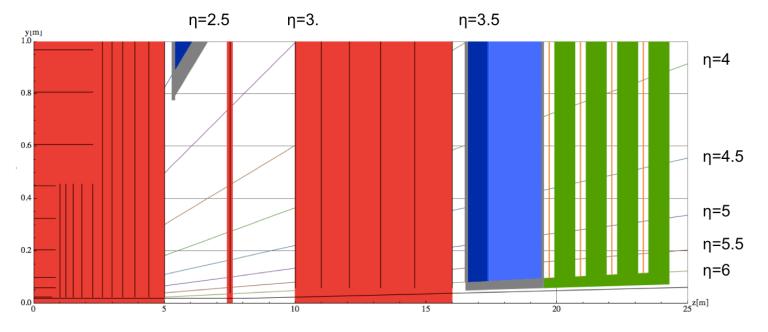
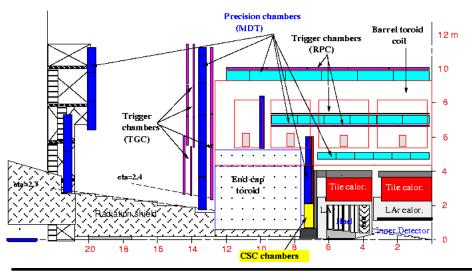
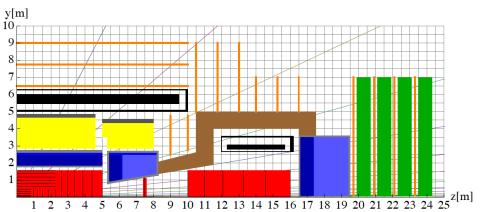
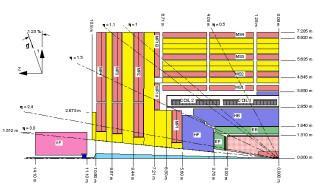

Muon System

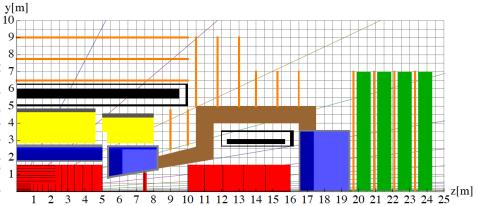

FCC week Berlin, May 29th – June 2nd 2017

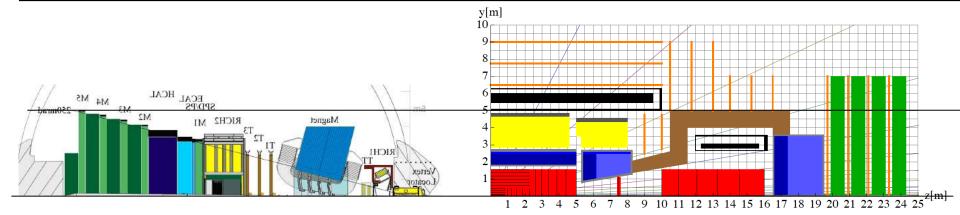

W. Riegler, CERN

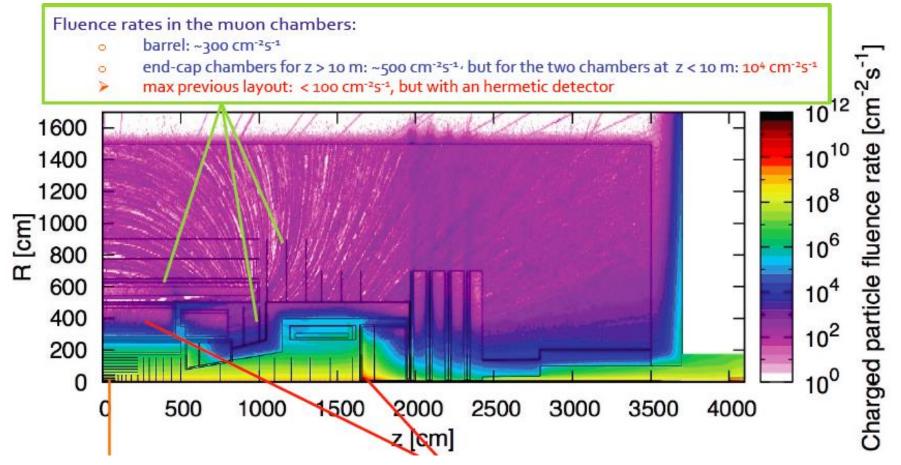

Only slide collection for now !

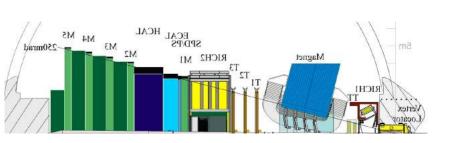

DETECTOR OVERVIEW







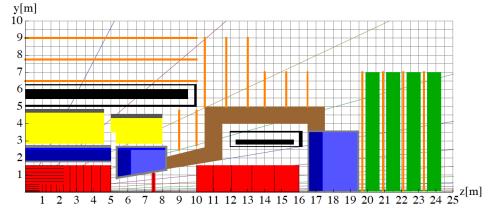
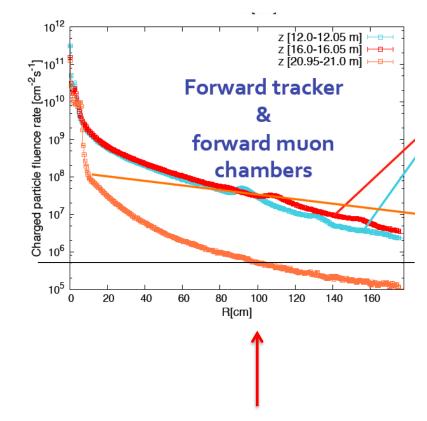


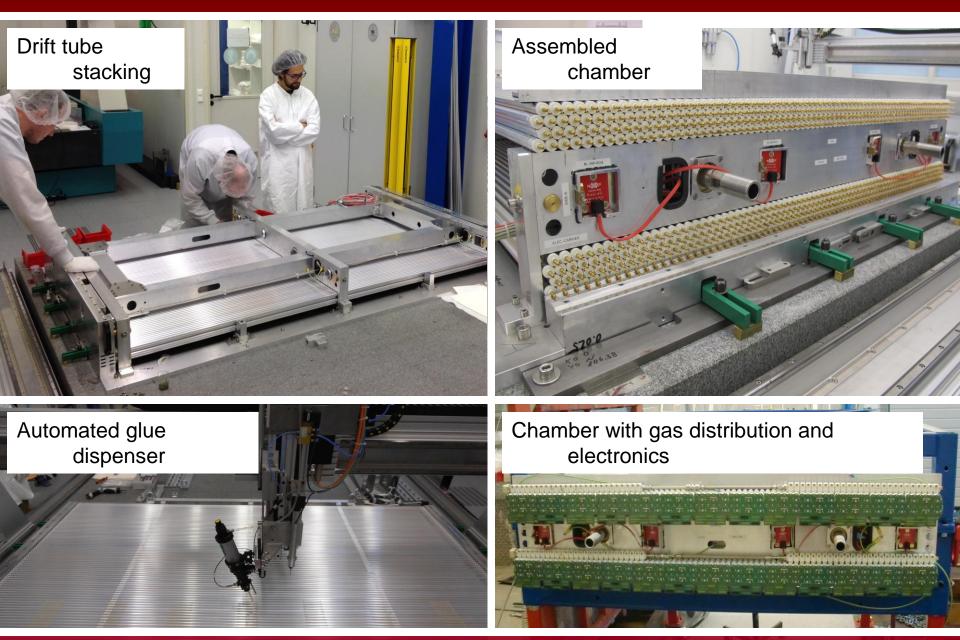


Compare to ATLAS Muon system with a maximum of XXXHz/cm^2 for the drift tubes of the muon system @ HL-LHC 7x10³⁴ XXXHz/cm^2 for the TGCs/MICROMEGAS of the muon system at HL-LHC 7x10³⁴ XXXHz/cm^2 for the RPCs of the ATLAS muons system at HL-LHC 7x10³⁴

XXXHz/cm² for the wire chambers of the LHCb muon system @ 2x10³³ XXXHz/cm² for the GEMs of the LHCb muon system @ 4x10³²

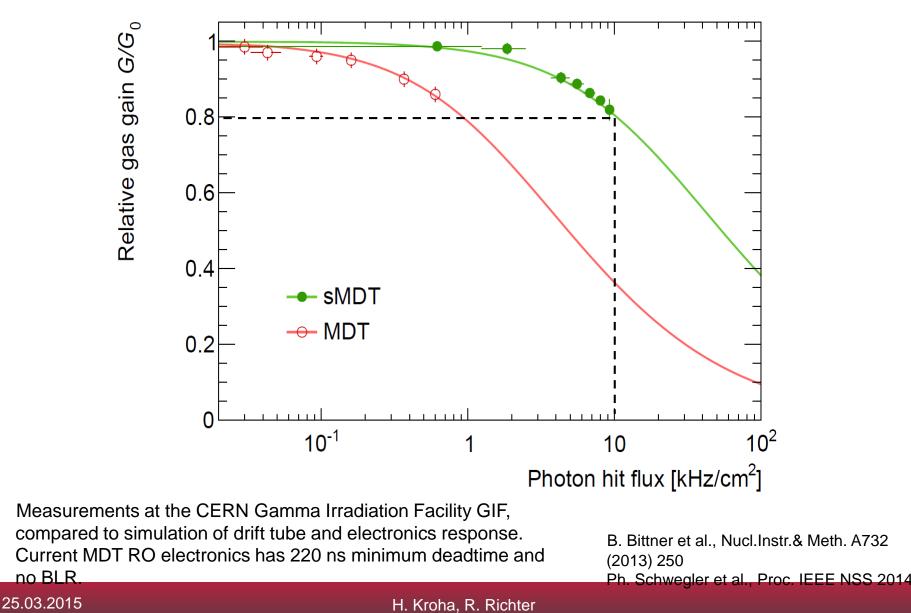
→ The HL-LHC muon system technology will be well adapted to a FCC muon system in terms of rate capability.


Table 4.5: Expected rates on the muon detector when operating at an instantaneous luminosity of 2×10^{33} cm⁻²s⁻¹ at a collision energy of 14 TeV. The values are averages, in kHz/cm², over the chamber with the minimum illumination, the whole region and the chamber with maximum illumination. The values are extrapolated from measured rates at 8 TeV.

Region	Minimum	Average	Maximum
M2R1	162 ± 28	327 ± 60	590 ± 110
M2R2	15.0 ± 2.6	52 ± 8	97 ± 15
M2R3	0.90 ± 0.17	5.4 ± 0.9	13.4 ± 2.0
M2R4	0.12 ± 0.02	0.63 ± 0.10	2.6 ± 0.4
M3R1	39 ± 6	123 ± 18	216 ± 32
M3R2	3.3 ± 0.5	11.9 ± 1.7	29 ± 4
M3R3	0.17 ± 0.02	1.12 ± 0.16	2.9 ± 0.4
M3R4	0.017 ± 0.002	0.12 ± 0.02	0.63 ± 0.09
M4R1	17.5 ± 2.5	52 ± 8	86 ± 13
M4R2	1.58 ± 0.23	5.5 ± 0.8	12.6 ± 1.8
M4R3	0.096 ± 0.014	0.54 ± 0.08	1.37 ± 0.20
M4R4	0.007 ± 0.001	0.056 ± 0.008	0.31 ± 0.04
M5R1	19.7 ± 2.9	54 ± 8	91 ± 13
M5R2	1.58 ± 0.23	4.8 ± 0.7	10.8 ± 1.6
M5R3	0.29 ± 0.04	0.79 ± 0.11	1.69 ± 0.25
M5R4	0.23 ± 0.03	2.1 ± 0.3	9.0 ± 1.3

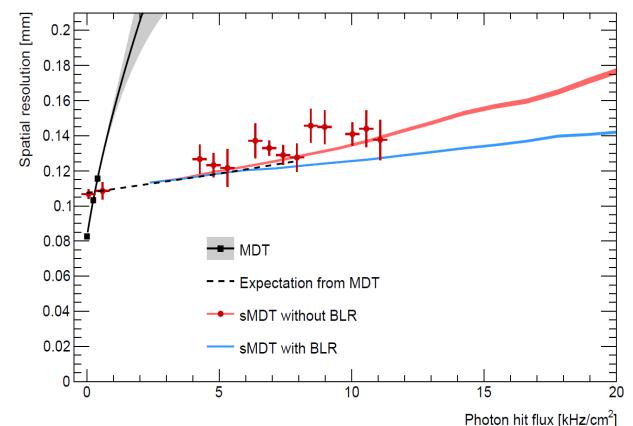
For r>1m the rates are similar to the ones of the upgraded LHCb muon system.


sMDT Chamber Construction for ATLAS Upgrades

H. Kroha, R.

Space Charge Effects

sMDT tubes show only 20% gain loss at 10 kHz/cm² γ hit rate

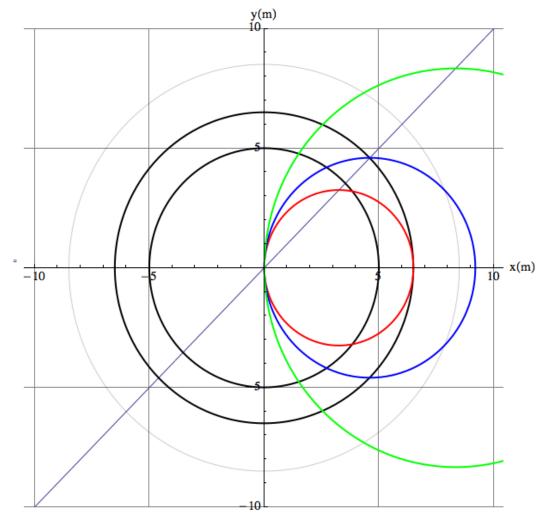


8

sMDT Single-Tube Resolution

sMDT resolution limited at high counting rates by signal pile-up effects of the electronics, in contrast to MDTs where space charge effects dominate

- suppression of signal pile-up effects with fast baseline restoration (BLR)


Measurements at the CERN Gamma Irradiation Facility, compared to simulation of drift tube and electronics response. Current MDT RO electronics has 220 ns minimum deadtime and no BLR.

25.03.2015

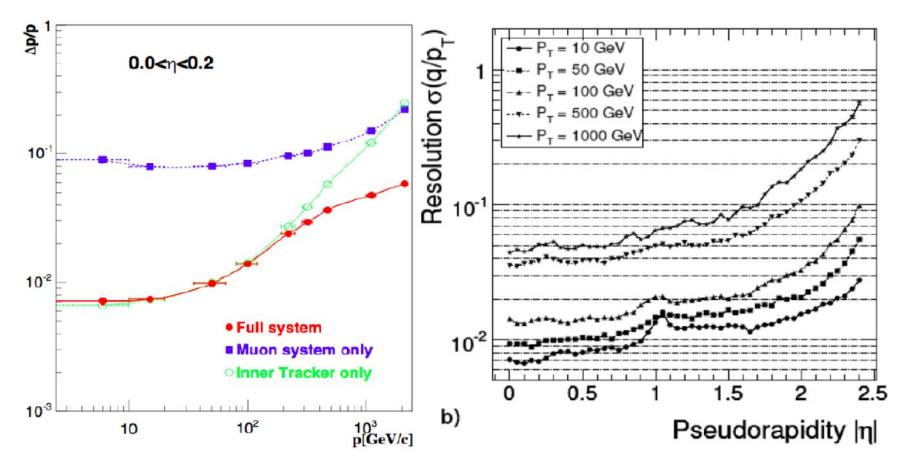
B. Bittner et al., Nucl.Instr.& Meth. A732 (2013) 250 Ph. Schwegler et al., Proc. IEEE NSS 2014

H. Kroha, R. Richter

Muon Pt cutoff and minimum trigger threshold in the main solenoid

In[3]:= (* ====== *)
In[4]:= Rmuon1 = 6.5;
In[5]:= Rcoil1 = 5.;
In[6]:= B0 = 4;
In[7]:= pmin1 = p[Rmuon1/2, B0]
Out[7]= 3.9
In[8]:= p45x1 = p[Rmuon1/Sqrt[2], B0]
Out[8]= 5.51543

In[9]:= (* ======== *)

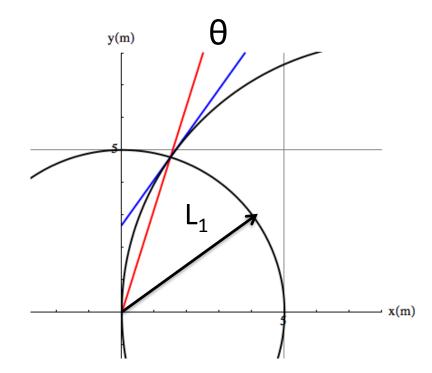

Pt=3.9GeV enters muon system

Pt=5.5GeV leaves coil at 45 degrees

Pt=10GeV

Muon Performance at η=0

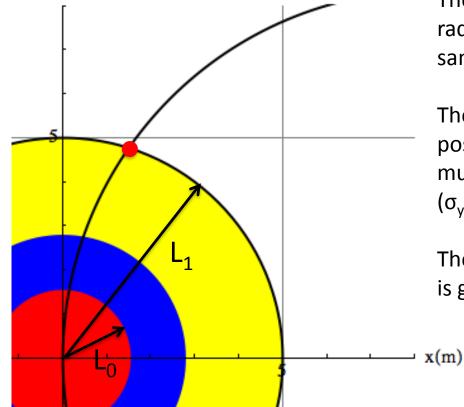
CMS performance at eta zero



Muon System Only

The standalone muon momentum resolution is defined by the angular measurement of the muon as it enter the muon system, and is given by

$$\frac{\Delta p}{p} = \frac{2p}{0.3L_1B} \sqrt{\theta_0^2 + \sigma_{theta}^2} \tag{214}$$


$$\theta_0 = \frac{0.0136}{\beta p [GeV/c]} \sqrt{\frac{L_{Calo}}{X_{0_{Calo}}}} \left(1 + 0.038 \log \frac{L_{Calo}}{X_{0_{Calo}}} \right)$$
(212)

 σ_{θ} represents the angular measurement error of the muon chambers.

 θ_0 represents the angular measurement error due to multiple scattering in the calorimeters.

Full System

We assume a constant magnetic field inside the coil radius L_1 .

The measurement points in the tracker of radius L_0 are equidistant and have all the same resolution σ_0 .

The measurement point at L_1 has a position error σ_1 that is given by the multiple scattering inside the calorimeters (σ_y in the following).

The formula for the momentum resolution is given in the next slide.

17. Combined muon fit formulas

The curvature error Δc^2 for a track in a constant magnetic field, measured at N + 1 independent positions $x_0, x_1, ..., x_N$ with measurement errors $\sigma_0, \sigma_1, ..., \sigma_N$ is given by

$$S_m = \sum_{n=0}^{N} \frac{x_n^m}{\sigma_n^2} \qquad \Delta c^2 = \frac{4\left(S_1^2 - S_0 S_2\right)}{S_2^3 - 2S_1 S_2 S_3 + S_0 S_3^2 + S_1^2 S_4 - S_0 S_2 S_4}$$
(208)

and the resulting momentum resolution is

$$\frac{\Delta p}{p} = \frac{p}{0.3B} \,\Delta c \tag{209}$$

For N + 1 equidistant layers $x_0 = 0, x_1 = L_0/N, x_2 = 2L/N, ..., x_N = L_0$ with resolutions $\sigma_0 = \sigma_1 = ... = \sigma_N = \sigma$ we get the result

$$\frac{\Delta p}{p} = \frac{p}{0.3B} \frac{\sigma}{L_0^2} \sqrt{\frac{720N^3}{(N-1)(N+1)(N+2)(N+3)}} \approx \frac{p}{0.3B} \frac{\sigma}{L_0^2} \sqrt{\frac{720}{N+5}} \quad N \gg 1$$
(210)

The approximate expression stays within 5% of the correct one for all $N \ge 2$.

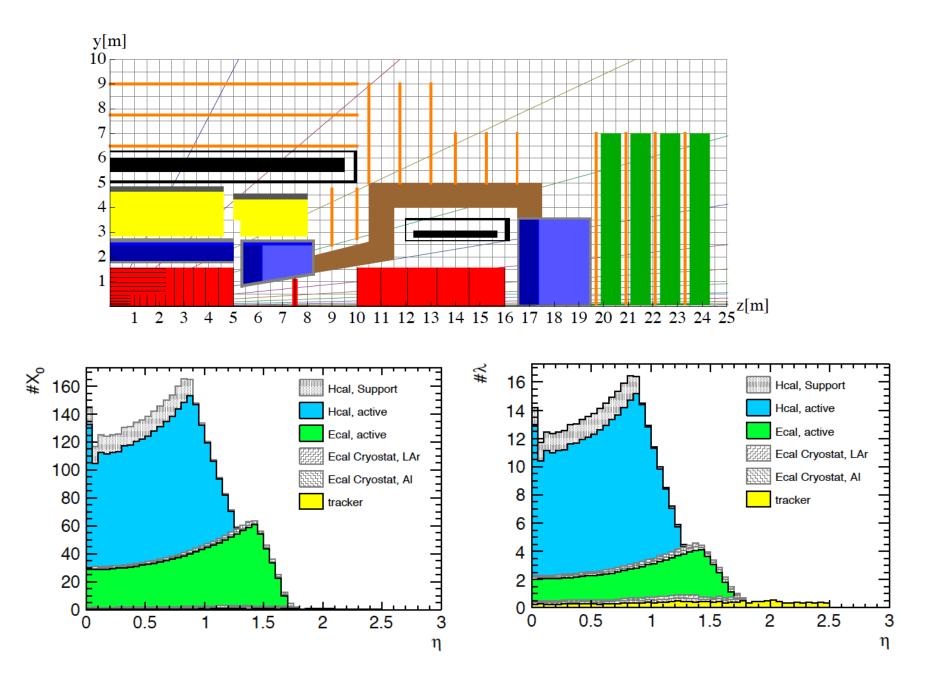
If we assume the above N + 1 layers to have resolution σ_0 and one additional measurement point at position $x_{N+1} = L_1$ with resolution σ_1 , the expression for Δp reads as

$$\frac{\Delta p}{p} = \frac{p}{0.3B} \frac{\sigma_0}{L_0^2} \sqrt{\frac{720N^3(c_1\sigma_0^2 + c_2\sigma_1^2)}{(N+1)(N+2)(c_3\sigma_0^2 + c_4\sigma_1^2)}}$$
(211)

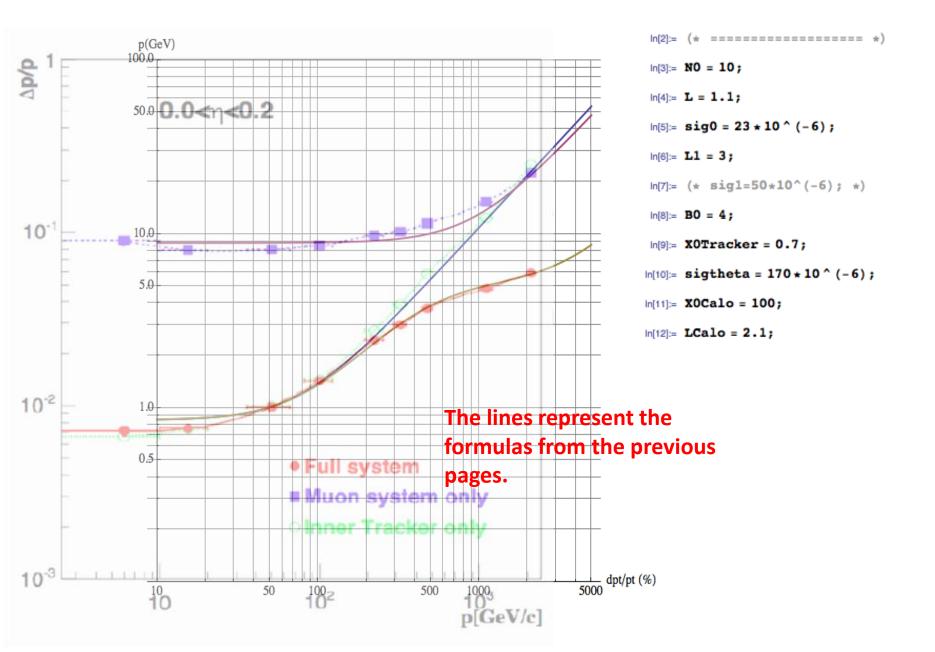
$$\begin{array}{rcl} c_1 &=& 2[2N(L_0^2 - 3L_0L_1 + 3L_1^2) + L_0^2] \\ c_2 &=& L_0^2 \left(N + 1\right)(N + 2) \\ c_3 &=& 3\left[L_0^2(3N^3 - N - 2) - 12L_0L_1(2N^3 - N^2 - N) + 12L_1^2(7N^3 - N^2 - N)\right] + 60N^3 \frac{L_1^4}{L_0^2} - 120N^3 \frac{L_1^3}{L_0} \\ c_4 &=& L_0^2(N - 1)(N + 1)(N + 2)(N + 3) \end{array}$$

The position error of the track as it traverses the calorimeter of depth L_{Calo} is given by

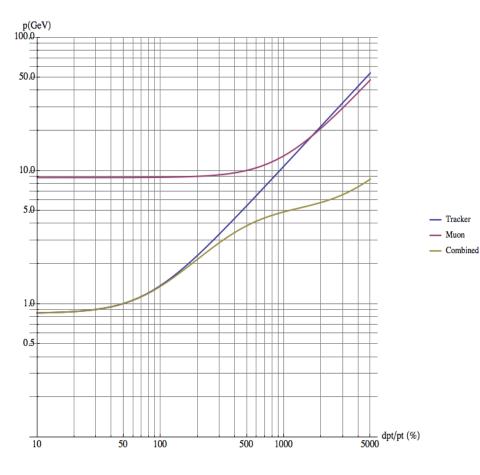
$$\theta_0 = \frac{0.0136}{\beta p [GeV/c]} \sqrt{\frac{L_{Calo}}{X0_{Calo}}} \left(1 + 0.038 \log \frac{L_{Calo}}{X0_{Calo}} \right)$$
(212)


$$\sigma_y = \frac{1}{\sqrt{3}} L_{Calo} \theta_0 \tag{213}$$

Muon Performance Formulas at η=0

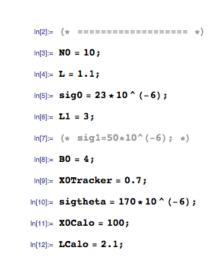

$$\begin{aligned} \text{Muon System standalone} \quad & \frac{\Delta p}{p} = \frac{2p}{0.3L_1B} \sqrt{\theta_0^2 + \sigma_{theta}^2} \qquad \theta_0 = \frac{0.0136}{\beta p [GeV/c]} \sqrt{\frac{L_{Calo}}{X0_{Calo}}} \left(1 + 0.038 \log \frac{L_{Calo}}{X0_{Calo}} \right) \\ \text{Inner Tracker} \qquad & \frac{\Delta p}{p} = \frac{p}{0.3B} \frac{\sigma}{L_0^2} \sqrt{\frac{720N^3}{(N-1)(N+1)(N+2)(N+3)}} \approx \frac{p}{0.3B} \frac{\sigma}{L_0^2} \sqrt{\frac{720}{N+5}} \qquad N \gg 1 \end{aligned}$$

$$\begin{aligned} \text{Combined} \qquad & \frac{\Delta p}{p} = \frac{p}{0.3B} \frac{\sigma_0}{L_0^2} \sqrt{\frac{720N^3(c_1\sigma_0^2 + c_2\sigma_1^2)}{(N+1)(N+2)(c_3\sigma_0^2 + c_4\sigma_1^2)}} \qquad (211) \end{aligned}$$

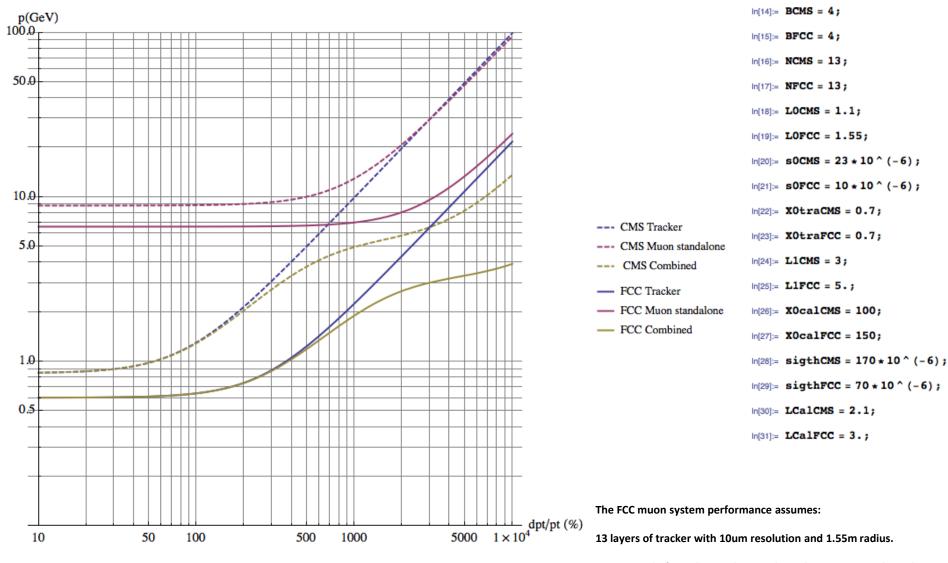

$$\begin{split} c_1 &= 2[2N(L_0^2 - 3L_0L_1 + 3L_1^2) + L_0^2] \\ c_2 &= L_0^2(N+1)(N+2) \\ c_3 &= 3\left[L_0^2(3N^3 - N - 2) - 12L_0L_1(2N^3 - N^2 - N) + 12L_1^2(7N^3 - N^2 - N)\right] + 60N^3\frac{L_1^4}{L_0^2} - 120N^3\frac{L_1^3}{L_0} \\ c_4 &= L_0^2(N-1)(N+1)(N+2)(N+3) \\ \\ \sigma_y &= \frac{1}{\sqrt{3}}L_{Calo}\theta_0 \end{split}$$

CMS muon resolution at $\eta=0$

CMS muon resolution at $\eta=0$

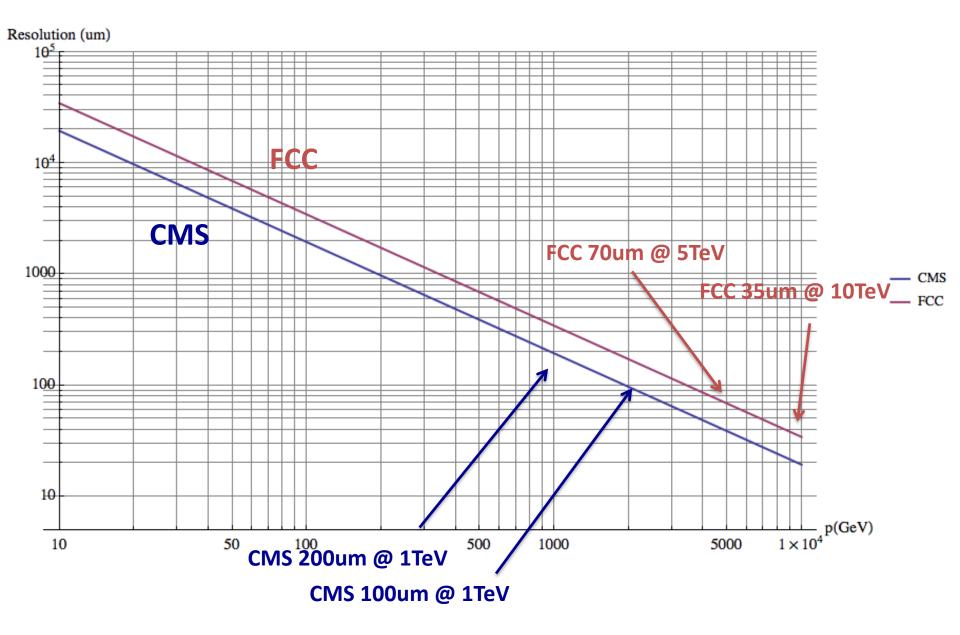


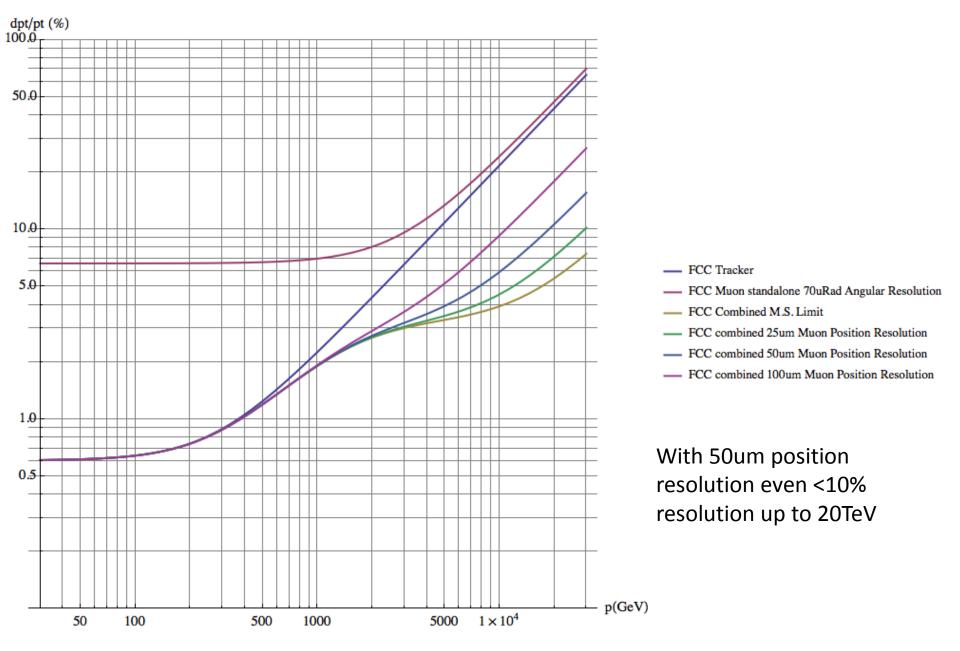
The CMS muon system performance is well represented by assuming:


10 layers of tracker with 23um resolution.

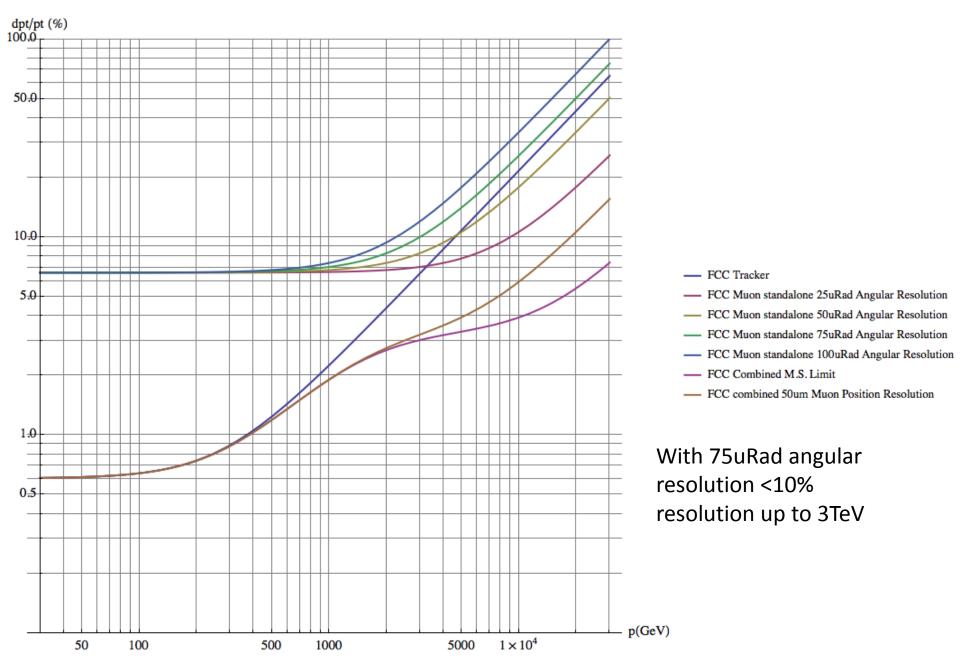
170 microrad of angular resolution where the muon exits the coil.

Better than 100um position resolution where the muon exits the coil.


Comparing CMS to possible FCC resolution


70 microrad of angular resolution where the muon exits the coil.

Better than 25um position resolution where the muon exits the coil.


Multiple scattering error dy at the entrance of the muon system

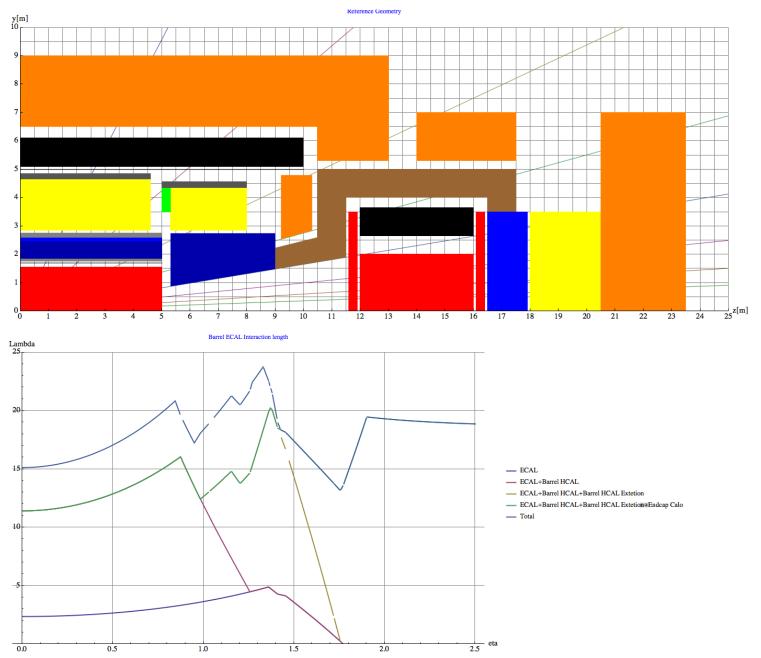
Combined performance for varying position resolution

Standalone performance for varying angular resolution

FCC detector muon system

A 50um position resolution and 70uRad angular resolution for muons exciting the solenoid will give excellent standalone and combined muon resolution at eta=0.

This can be easily realized by present technology.


E.g. Two redundant stations of detectors with 50um position resolution at a separation of 1-2 meters will realize this requirement.

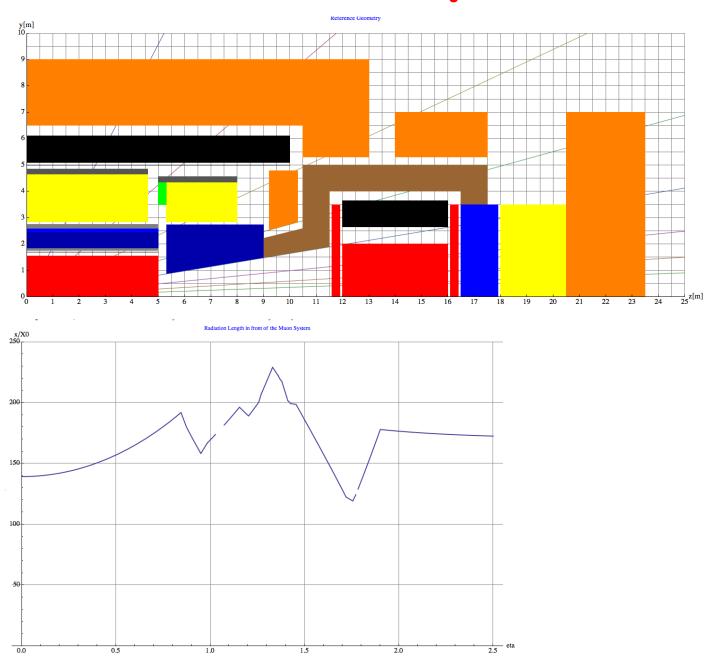
The distance between the stations must be large enough to make sure that correlated background is eliminated.

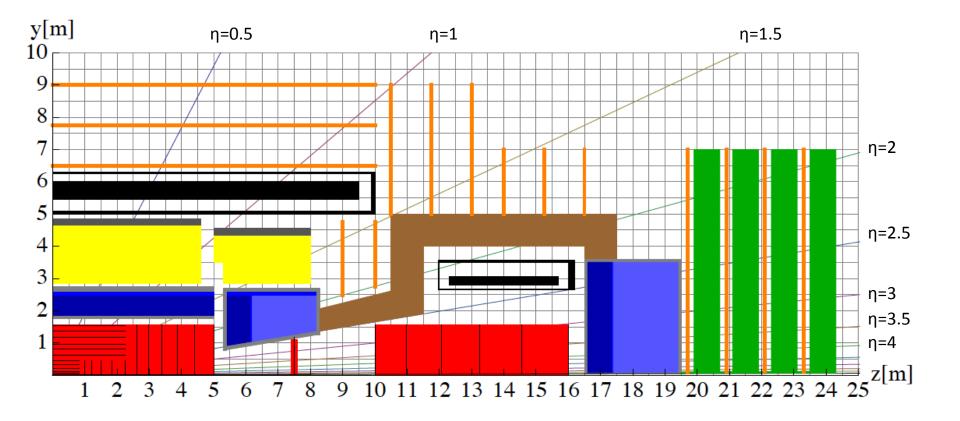
The existing magnetic fields around 1.5Tm should be sufficient for that. Simulations have to prove this fact.

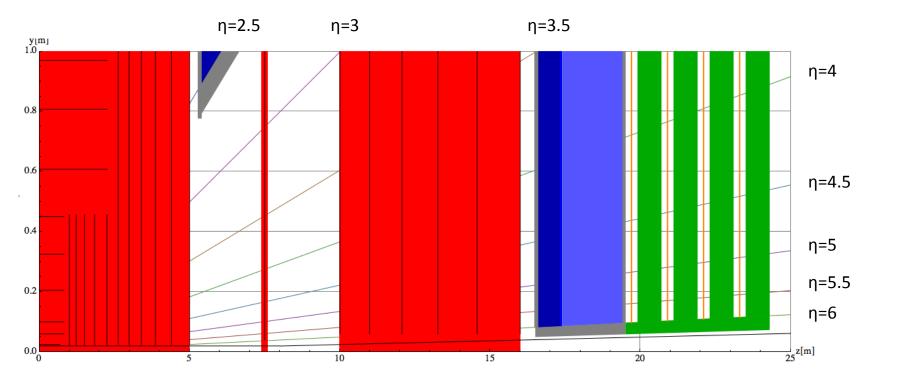
Resolution studies for larger η values still to be done.

Number of interaction lengths (λ) of the different Systems

Number of radiation lengths (X₀) in front of the Muon System




Table 4.5: Expected rates on the muon detector when operating at an instantaneous luminosity of 2×10^{33} cm⁻²s⁻¹ at a collision energy of 14 TeV. The values are averages, in kHz/cm², over the chamber with the minimum illumination, the whole region and the chamber with maximum illumination. The values are extrapolated from measured rates at 8 TeV.


Region	Minimum	Average	Maximum
M2R1	162 ± 28	327 ± 60	590 ± 110
M2R2	15.0 ± 2.6	52 ± 8	97 ± 15
M2R3	0.90 ± 0.17	5.4 ± 0.9	13.4 ± 2.0
M2R4	0.12 ± 0.02	0.63 ± 0.10	2.6 ± 0.4
M3R1	39 ± 6	123 ± 18	216 ± 32
M3R2	3.3 ± 0.5	11.9 ± 1.7	29 ± 4
M3R3	0.17 ± 0.02	1.12 ± 0.16	2.9 ± 0.4
M3R4	0.017 ± 0.002	0.12 ± 0.02	0.63 ± 0.09
M4R1	17.5 ± 2.5	52 ± 8	86 ± 13
M4R2	1.58 ± 0.23	5.5 ± 0.8	12.6 ± 1.8
M4R3	0.096 ± 0.014	0.54 ± 0.08	1.37 ± 0.20
M4R4	0.007 ± 0.001	0.056 ± 0.008	0.31 ± 0.04
M5R1	19.7 ± 2.9	54 ± 8	91 ± 13
M5R2	1.58 ± 0.23	4.8 ± 0.7	10.8 ± 1.6
M5R3	0.29 ± 0.04	0.79 ± 0.11	1.69 ± 0.25
M5R4	0.23 ± 0.03	2.1 ± 0.3	9.0 ± 1.3

 \cdot 2 Particle rates in the muon system. The first row gives the maximal particle rate in each region tation per interaction as obtained from GCALOR; the second gives the calculated rate at a luminosity of $5\times10^{32}\,{\rm cm}^{-2}\,{\rm s}^{-1}$ assuming a total p-p cross-section of σ =102.4 mb; and the last row the rate including fety factors.

	Station 1	Station 2	Station 3	Station 4	Station 5	
	8.3×10^{-3} /cm ²	2.7×10^{-4} /cm ²	7.2×10^{-5} /cm ²	$4.7 \times 10^{-5} /\mathrm{cm}^2$	3.2×10^{-5} /cm ²	
gion 1	230 kHz/cm^2	7.5 kHz/cm^2	2 kHz/cm^2	2.3 kHz/cm^2	880 Hz/cm^2	
	460 kHz/cm^2	37.5 kHz/cm^2	$10 \mathrm{kHz/cm^2}$	6.5 kHz/cm^2	4.4 kHz/cm^2	
	3.3×10^{-3} /cm ²	1.9×10^{-4} /cm ²	2.3×10^{-5} /cm ²	1.6×10^{-5} /cm ²	1.3×10^{-5} /cm ²	
gion 2	93 kHz/cm^2	$5.3 \mathrm{kHz/cm^2}$	$650 \mathrm{Hz/cm^2}$	$430 \text{Hz}/\text{cm}^2$	$350 \text{Hz}/\text{cm}^2$	
	$186 \mathrm{kHz}/\mathrm{cm}^2$	26.5 kHz/cm^2	$3.3 \mathrm{kHz/cm^2}$	2.2 kHz/cm^2	1.8 kHz/cm^2	
gion 3	1.4×10^{-3} /cm ²	4.7×10^{-5} /cm ²	7.3×10^{-6} /cm ²	5.4×10^{-6} /cm ²	4.7×10^{-6} /cm ²	
	40 kHz/cm^2	1.3 kHz/cm^2	200 Hz/cm^2	$150 \mathrm{Hz/cm^2}$	$130 \text{Hz}/\text{cm}^2$	
	80 kHz/cm^2	$6.5 \mathrm{kHz/cm^2}$	1.0 kHz/cm^2	$750 \text{Hz}/\text{cm}^2$	$650 \text{Hz}/\text{cm}^2$	
gion 4	4.5×10^{-4} /cm ²	8.3×10^{-6} /cm ²	3.0×10^{-6} /cm ²	1.8×10^{-6} /cm ²	1.7×10^{-6} /cm ²	
	12.5 kHz/cm^2	230 Hz/cm^2	83Hz/cm^2	50 Hz/cm^2	45 Hz/cm^2	
	25 kHz/cm^2	1.2 kHz/cm^2	415 Hz/cm^2	$250 \text{Hz}/\text{cm}^2$	225 Hz/cm^2	

							-					
Muon TDR for 5x10^32			Upgrade TDI	R for 2x10^33			ratio	@ 2x10^	33			
590	216	86	91	7.5	2	2.3	0.88		19.7	27.0	9.3	25.9
97	29	12.6	10.8	5.3	0.65	0.43	0.35		4.6	11.2	7.3	7.7
13.4	2.9	1.37	1.69	1.3	0.2	0.15	0.13		2.6	3.6	2.3	3.3
2.6	0.63	0.31	9	0.23	0.083	0.05	0.045		2.8	1.9	1.6	50.0

