Electromagnetic calorimeter using LAr technology for FCC-hh

J. Faltova, M. Aleksa, C. Helsens, A. Henriques, C. Neubüser, A. Zaborowska

FCC week Berlin, 29/5 - 2/6 2017

Outline

Calorimeter system in FCC-hh

- Requirements
- Technologies under consideration

Electromagnetic calorimeter proposal

- Geometry
- Performance of single electrons

Calorimetry in FCC software

Conclusions

Calorimeters in FCC-hh detector

Electromagnetic barrel (ECAL B) + endcap (ECAL EC) + forward (EFCAL)

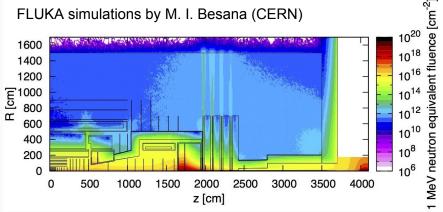
Coverage of the calorimeter system up to $|\eta| = 6.0$

Hadronic endcap (HCAL EC) + forward (HFCAL)

Hadronic barrel (HCAL B) + extended barrel (HCAL EB)

Requirements for calorimeters at FCC-hh

Electrons / photons, jets, taus, E_{T}^{miss} measurements


Requirements

- Good energy and angular resolutions
- Pile-up rejection (<µ> up to ~ 1000)
- Radiation hardness
 (5 x 10¹⁸ n_{eq}/cm²,
 dose up to 5 GGy
 for 30 ab⁻¹ in forward cal.)

Use of Particle Flow techniques \rightarrow fine granularity

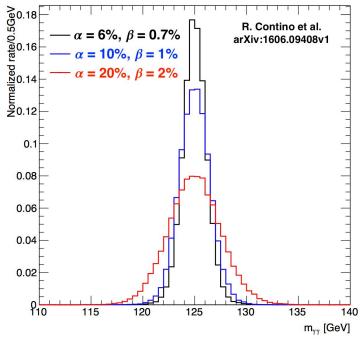
Timing detectors, radiation hard materials

Strong requirements on radiation hardness

Benchmark channels (ECAL)

Precision Standard Model measurements

Beyond Standard Model


• Heavy resonances $(Z' \rightarrow ee, W' \rightarrow e\nu, X \rightarrow \gamma\gamma, X \rightarrow jj)$

Requirements

- High energy resolution
- High angular resolution for *p*_T measurements
- Good linearity of calorimeter response

Calibration & stability is crucial in such harsh environment

$$\frac{\sigma_E}{E} = \frac{\alpha}{\sqrt{E}} \oplus \beta$$

Technologies under consideration

Baseline geometry

(inspired by ATLAS calorimetry with excellent conventional calorimetry and in addition high granularity to optimise for Particle Flow techniques)

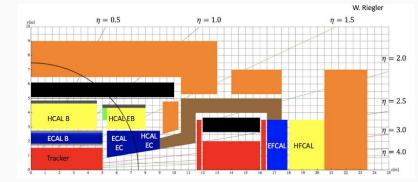
- LAr / Pb (Cu) (this talk)
 - ECAL + hadronic endcap / forward
- Scintillating tiles / Fe with SiPM (C. Neubüser)
 - HCAL barrel + extended barrel

Other options considered for ECAL

- Digital Si / W (T. Price)
- Analog Si / W (not yet studied)

HCAL granularity studies (S. Chekanov)

Strong requirements on radiation hardness


	Max. eq. fluence [n/cm²]	Max. dose [MGy]	
ECAL B	4 x 10 ¹⁵	~0.1	
ECAL EC	3 x 10 ¹⁶	~1	
HCAL EC	2 x 10 ¹⁶	~1	
FCAL	5 x 10 ¹⁸	5 x 10 ³	
HCAL B	4 x 10 ¹⁴	6 x 10 ⁻³	
HCAL EB	4 x 10 ¹⁴	10 ¹⁴ 6 x 10 ⁻³	
1st layer IB	6 x 10 ¹⁷ 4 x 10 ²		

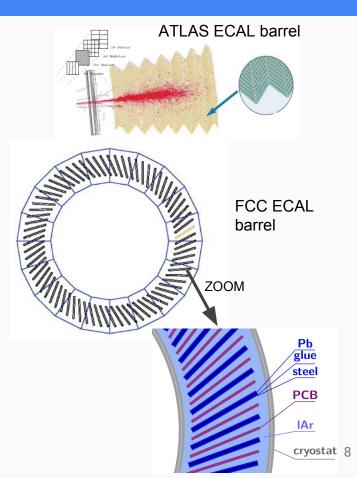
Baseline option for calorimeters

High-granularity calorimeter using LAr / Pb (Cu) + scintillators / Steel technologies

2-4 x better granularity than ATLAS calorimeters

• Granularity to be optimized based on further studies (e.g. pile-up rejection)

NAME	Technology	η coverage	# long.layers	Δη χ Δφ #	channels (x10 ⁶)
ECAL B	LAr / Pb	< 1.7	8	0.01 x 0.012	1.3
ECAL EB	LAr / Pb	1.5 - 2.5	6	0.01 x 0.012	0.6
HEC	LAr / Cu	1.7 - 2.5	6	0.025 x 0.025	0.1
EFCal	LAr / Pb	2.3 - 6.0	6	0.025 x 0.025	0.5
HFCal	LAr / Cu	2.3 - 6.0	6	0.05 x 0.05	0.1
HCAL B	Scint. Tiles / Stain. Steel	< 1.3	10	0.025 x 0.025	0.2
HCAL EB	Scint. Tiles / Stain. Steel	1.0 - 1.8	8	0.025 x 0.025	0.07
Total	LAr / Pb				2.3
	LAr / Cu				0.2
	Scint. Tiles / Stain. Steel		x		0.3


ECAL barrel geometry

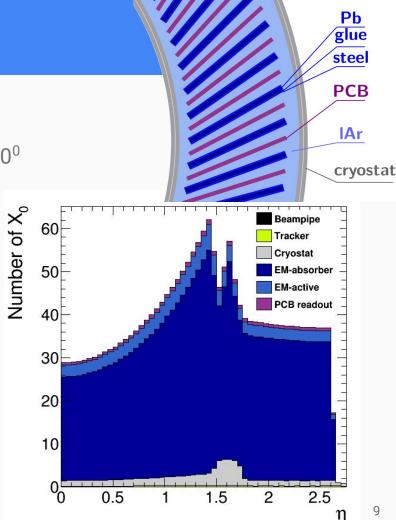
Detector with larger longitudinal and transversal granularity compared to ATLAS

• Possible only with straight multilayer electrodes

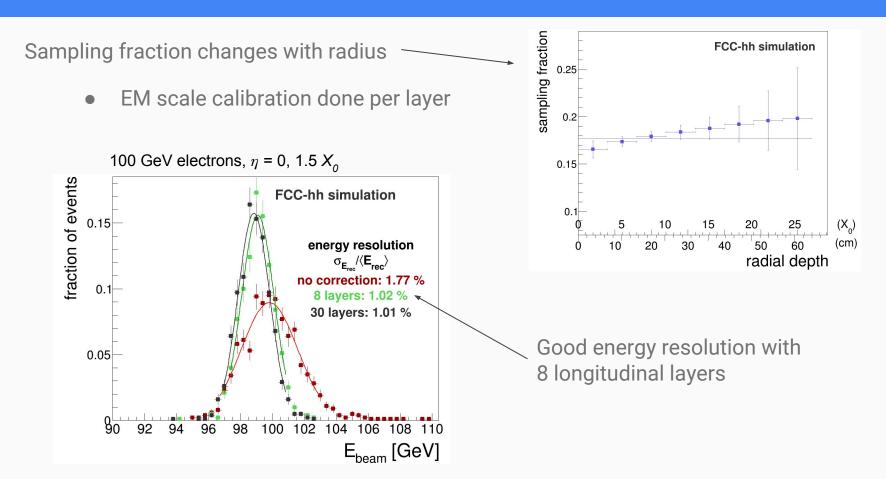
Proposal: Inclined plates of absorber (Pb) + active material (LAr) + multilayer readout (PCB)

- Pros: Easy construction
- Cons: Sampling fraction changes with radius
 - Goal energy resolution of 10% / sqrt(E) \oplus 1%

ECAL barrel + endcap


Barrel

- Absorber plates (2mm) inclined by angle of 30⁰
- LAr thickness increasing with radius 3 5.4 mm (LAr / Pb ratio: 1.5 2.7)
- 29 X_0 at $\eta = 0$ (1.5 X_0 in front of the active detector)

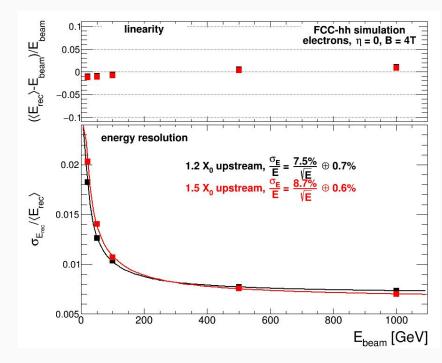

Endcaps

• Parallel discs of absorber

Cryostat material has to be optimized ($\eta > 1$)

EM scale calibration

Performance of single electrons

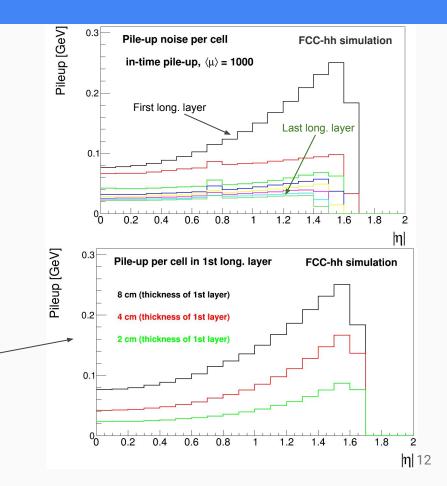

Simulations of single electrons

• Without pile-up and electronic noise

Correction for energy loss in cryostat calculated from the energy deposit in the 1st longitudinal layer

Goal energy resolution achieved

Good linearity

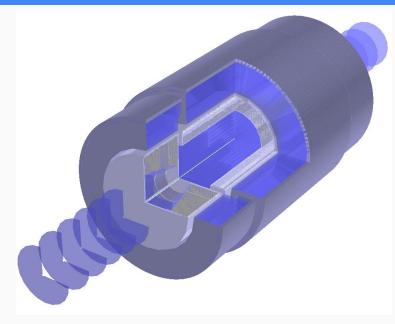

Pile-up

High pile-up ($<\mu$ > = 1000) at FCC-hh

• Important to study the reconstruction under these conditions

Estimate of pile-up noise in calorimeter

- Longitudinal layers of the same size (~8 cm)
- Very high pile-up contribution in the 1st layer
 - Thinner layer is less sensitive to pile-up
- Geometry optimization needed


Calorimeters in FCC software

Baseline geometry

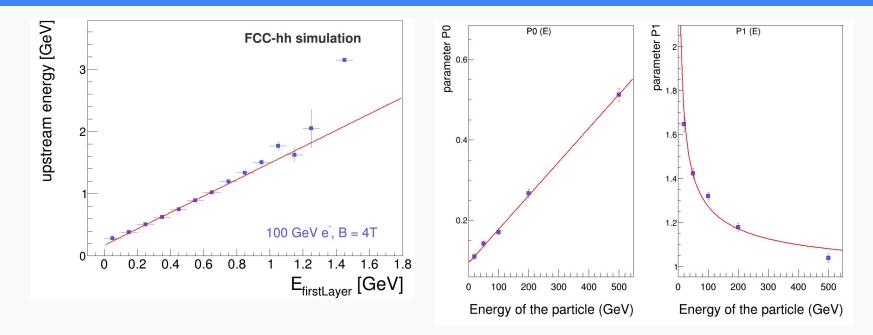
- ECAL barrel (done)
- Hadronic barrel + extended barrel (done)
- ECAL + hadronic endcaps (done)
- ECAL + hadronic forward (to be done)

Reconstruction

- Electron reconstruction with clustering algorithm (done)
- Topological clusters (work in progress)
- Particle flow (to be done)

Conclusions

All tools in place for a detailed design optimization studies up to $|\eta| = 6$


Goal energy resolution achieved in ideal conditions

- To be studied in different η -regions
- To be optimized for high pile-up

Si/W option for ECAL to be studied

BACKUP

Upstream energy correction

Geometry optimization studies

Pointing geometry

Upstream energy correction

Pile-up noise reduction

Neutral pions identification

$\eta = 0.4$ $\eta = 0.6$ $\eta = 0.7$ = 0.3 $\eta = 0.5$ $\eta = 0.8$ = 0.9 = 0.1 = 0.2depth $(cm)(X_0)$ 65 + 2957 57 + 2549 + 2141 + 1810. 1 33 + 1424 + 1116 + 78-4 0 + 0(m)

Proposal for optimisation