Hadron calorimetry at the FCC-hh experiment

C. Neubiser', M. Aleksa, J. Faltova,
C. Helsens, A. Henriques, A. Zaborowska

01.06.2017
FCC Week, Berlin

Q) RN(G=D

N/

"coralie.neubuser@cern.ch
1/16



FCC-hh Hadron Calorimeter — physics requirements
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@ Jet rapidity of WBF e
—> 7 coverage up to 6

@ Highly collimated final states (boosted decay
products of heavy objects) ,
—> High granularity to resolve jet sub-structure oos|-
and background rejection (e.g. pile-up jets, 7°)

@ High prijetsatn =20
—> containment > 11 \
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FCC-hh Hadronic Calorimeter — Scintillator/Steel |

1. Current reference for FCC-hh

ATLAS type Scintillator tile - Steel
in Barrel and Extended Barrel

@ 4 times higher granularity A¢ x An = 0.025 x 0.025

@ 10 instead of 3 longitudinal layers

@ Steel — stainless Steel absorber (Calos in magnetic field)
@ SiPM readout —> faster, less noise, less space
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FCC hh Hadronlc Calorimeter — mechanics

FCC hh
, ' HCAL B
} module

N Topiline, S. Kolesnikov

MM[H::

FCC-hh
HCAL EB
module

' N. Tobiline. S. KSlesnikov

128 modules in 2¢ feasible J

mechanical structure fits within foreseen space J

85 x 85mm in dz = 9(2 x 3) m space within
mechanical support for SiPMs and electronics
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FCC-hh Hadronic Calorimeter — Scintillator/Steel

2. High Granularity (HGCAL) option
CALICE type, Scintillator tile - Steel/Brass

@ Phase Il upgrade of CMS Endcaps
@ 3 x 3cm? Sci tiles

@ integrated SiPM readout g steel absorber stack
@ active prototyping within CALICE collaboration Wrapped Sci Tile of CALICE AHCAL
Testbeam setup in ILD stack

Plans for FCC-hh: PT= — — . n
. . §,. [ 15<p™ <30  MFFehs ]
@ combined with Silicon - Lead ECAL Qo m Phaset 140PU 4
a q g a Q r A HGCal 0PU 1
@ granularity used for pile-up rejection ¥y ooE HGCal 140PU =
& 046; —f
o C ]
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—> Sergej will show jet reconstruction us- 02f Bl E
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HGCAL simulations, jet b+ resolution w/wo pile-up 5/16



FCC-hh full detector simulations
of the Sci-tile/stainless Steel HCAL

HCAL B

10 longitudinal layers
2x10cm
+4x15¢cm
+4 x25cm
An x Ad
0.025 x 0.025
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HCAL B performance for e~ and 7~

10,000 events per energy,
FTFP_BERT physics list,
n=0.36 — 9.3 #A\
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@ E,, k energy threshold/ multiplicity of 7°

production

@ increasing EM fraction with increasing
energy



How can we achieve compensation?

1. Increase response to neutrons
by increased fraction of hydrogen in Scintillator

2. Suppression of EM response

by higher Z absorber
—> spacer of HCAL in Pb: X3=0.6cm, A=17.59cm (Fe: Xpo=1.8cm, A=16.77 cm)

—> Agrr Of HCAL Barrel increases to 20.87 from 20.59cm (n = 0.36)

€ WLS fibers

Steel i Steel

™ Expected compensation

Tile ...
(no grooves) . o @ Fe:Sci ~ 20:1

@ Pb:Sci ~ 4-5:1

5 mm

3 mm

Steel

5mm
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Material budget of the HCAL B + EB

FCC-hh TileCal

- Active, fully Steel
|:| Active, Lead Spacer

E FCC-hh TileCal
- Active, fully Lead E

- Active, fully Steel
|:| Active, Lead Spacer

- Active, fully Lead E
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Pb spacers:  Xj increases by ~ 50%, minor decrease in #\
full Pb HCAL: Xj increases by ~ 150%, still little change in #X\
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HCAL B performance with Pb spacers for e~ and 7~

10,000 events per energy,
FTFP_BERT physics list,

7 =0.36 —> 9.1 #\ hits
i g Eeco=Y» Ei/a @
;5 _0.0: E . E @ acu,hadron = 3.2%,2.7%
Wb E @ e/h=1A1
T e e @ constant term decreased from 3.3 t0 2.5%
i - i —> need test performance in combined system

38.8% 5 504

Arguments pro Pb

beam

@ Pb structures constructible!

2720 @ higher Z material not an issue for timing
H2%00.8% (50 ns in SPACAL)

beam

@ steel structure not needed as return yoke
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FCC-hh full detector simulations

ECAL B, EC
LAr/Pb
3(-5.6)mm/2mm
8, 6 layers
An x Ad
0.01 x 0.01

HCAL EC
LAr/Cu
3mm/2cm
6 layers
An x Ad

0.025 x 0.025

HCAL B, EB
Sci-tile/stainless Steel
1/4.7
10, 8 layers
An x Ad
0.025 x 0.025
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Mggoesrial budget of FCC-hh full B-!-EB+EC

ot x
o FCC-hh simulation I
180 F: TileCal, Support 250

T T
FCC-hh simulation
TileCal, Lead spacer

[ ] Tilecal, Support

160 [ Tieca, active [ Titecal, aciive
140 [ o cal active 200 [ warcal, aciive
120 LAr Cal Cryostat, LAY LAr Cal Cryostat, LAY

LA Cal Cryostat, Al 150 LA Cal Cryostat, Al

128 [ vracker [ racker
100
60
40 50
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@ ECAL thickness: 30 #Xo o . ; T T
é 450 FCC-hh simulation
. . TileCal, fully Lead
@ E+HCAL thickness: 400 TileCal, Support
115 —-150 — 300 #X 350 =E.\ec:; actve
r Cal, active
—> needs study of muons 300 Ui Cal Gryostat, Lax
.  Cal Cryostat, Al
@ E+HCAL thickness: ~ 11 #\ 250 e
200

— for all Pb options

150
@ approx. 1.5#Xy in front of ECal 100
@ good 7 coverage, dipin #\atn=1.7 58

requires optimisation (longer HCAL EB?) 0 1 2 3 4 5 n6 216



LAr ECal + TileCal simulations

from Geant4 depositions (hits) to energy in Calorimeter cells

EZOOO £ Fcc-hh slimulatidn I E
E1500 £ 17ev 1t E
£1000 ECal =
% 500f  Hcal 3
> O E
-500 .
-1000 E
-1500 E =
-2000 E 3
-2500 E :
-3000 ¢ 3
0 1000 2000 3000 4000

x of hits [mm]

EM showers are contained in ECAL (30 #Xp)

Not included in the simulation yet:

@ electronics noise
@ pile-up noise
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E+HCal Resolution and Linearity
10,000 =~ events per energy,
FTFP_BERT, n = 0.36 —> 11 #\

£ 015 F =
wooaf 3
5 oosE E @ degraded resolution compared to HCAL
B oF 2 only: impact different sampling, EM scale
< -oosf 3 (e/h#1)
OE TR b @ 0.25#\ / 1.54#X, passive material
NS T 3 between E and HCal
W0.09 & FCC-hh simulation E
= 008 —e— E+HCal EMscale 3 @ comparable to ATLAS results:
Cppt: O B B scale 3 a=521+55%,8=19+0.3%
0.06 - 42.4% 5 55 E @ Pb spacers no effect on resolution, but
0.05F [ linearity improves
0.04 k—
003F  oyEr=L0p E Next steps:
%’%215 ‘é 287 o i S 3 1. Correction for lost energy needed
) o £ ) E 2. Clustering algorithm for jet reconstruction
10 10°

10°
Ebeam [G eV]
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Summary & Outlook

FCC-hh hadron calorimeters have to
@ survive harsh radiation environment ~ 5 x 10" neq

@ perform precise jet reconstruction of boosted objects

First (reference) calorimeter system tested in simulations
@ containment of 10 TeV hadron showers ensured

@ combined hadron reconstruction need further corrections

Next steps
@ implementation of other calorimeter options in FCCSW
@ tests including pile-up

@ jet reconstruction with particle flow algorithms
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Summary & Outlook

FCC-hh hadron calorimeters have to
@ survive harsh radiation environment ~ 5 x 10" neq

@ perform precise jet reconstruction of boosted objects

First (reference) calorimeter system tested in simulations
@ containment of 10 TeV hadron showers ensured

@ combined hadron reconstruction need further corrections

Next steps
@ implementation of other calorimeter options in FCCSW
@ tests including pile-up

@ jet reconstruction with particle flow algorithms

Thank You!
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Backup!



FCC-hh detector

baseline FCC week Berlin May 2017
total length ~47 m, height ~18 m
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NAME Technology n coverage # long.layers An x A # channels (x10°)
ECALB LAr/ Pb <17 8 0.01 x 0.012 1.3
ECALEC LAr/Pb 15-25 6 0.01 x 0.012 0.6
HCALEC LAr/Cu 1.7-25 6 0.025 x 0.025 0.1
EFCAL LAr/Pb 23-6.0 6 0.025 x 0.025 0.5
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