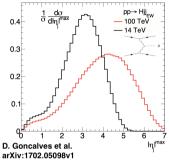
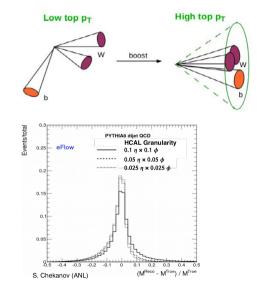
Hadron calorimetry at the FCC-hh experiment


<u>C. Neubüser</u>¹, M. Aleksa, J. Faltova, C. Helsens, A. Henriques, A. Zaborowska

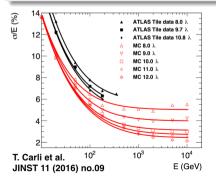
> 01.06.2017 FCC Week, Berlin

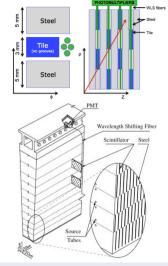


¹coralie.neubuser@cern.ch

FCC-hh Hadron Calorimeter – physics requirements

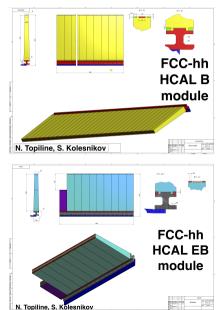
- Jet rapidity of WBF
 -> η coverage up to 6
- Highly collimated final states (boosted decay products of heavy objects)
 -> High granularity to resolve jet sub-structure and background rejection (e.g. pile-up jets, π⁰)
- High *p*_T jets at η = 0
 -> containment ≥ 11 λ

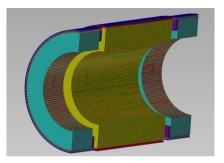

FCC-hh Hadronic Calorimeter – Scintillator/Steel I


1. Current reference for FCC-hh

ATLAS type Scintillator tile - Steel in Barrel and Extended Barrel

- 4 times higher granularity $\Delta \phi \times \Delta \eta = 0.025 \times 0.025$
- 10 instead of 3 longitudinal layers
- Steel -> stainless Steel absorber (Calos in magnetic field)


SiPM readout -> faster, less noise, less space



~ 11 λ FCC-hh HCAL, pion resolution: $\sigma_E/E = 43 \%/\sqrt{E} \oplus 2.7\%$

FCC-hh Hadronic Calorimeter – mechanics

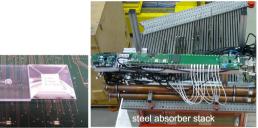
128 modules in 2ϕ feasible

mechanical structure fits within foreseen space

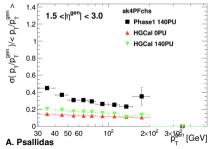
 $85 \times 85 \text{ mm}$ in $dz = 9(2 \times 3) \text{ m}$ space within mechanical support for SiPMs and electronics

FCC-hh Hadronic Calorimeter – Scintillator/Steel II

2. High Granularity (HGCAL) option


CALICE type, Scintillator tile - Steel/Brass

- Phase II upgrade of CMS Endcaps
- 3 × 3 cm² Sci tiles
- integrated SiPM readout
- active prototyping within CALICE collaboration


Plans for FCC-hh:

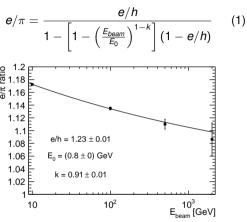
- combined with Silicon Lead ECAL
- granularity used for pile-up rejection

-> Sergej will show jet reconstruction using this High Granularity HCAL

Wrapped Sci Tile of CALICE AHCAL Testbeam setup in ILD stack

HGCAL simulations, jet p_T resolution w/wo pile-up

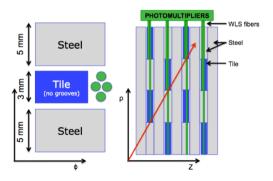
FCC-hh full detector simulations


of the Sci-tile/stainless Steel HCAL

HCAL B 10 longitudinal layers $2 \times 10 \text{ cm}$ $+ 4 \times 15 \text{ cm}$ $+ 4 \times 25 \text{ cm}$ $\Delta \eta \times \Delta \Phi$ 0.025×0.025

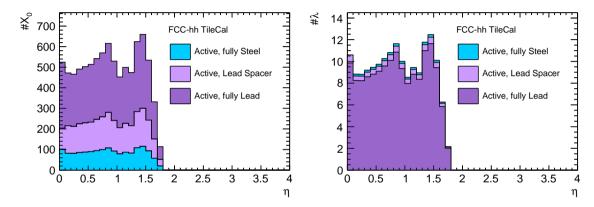
HCAL B performance for ${\rm e^-}$ and π^-

10,000 events per energy, $e/\pi = -$ FTFP BERT physics list, $\eta = 0.36 \rightarrow 9.3 \# \lambda$.0 1.2 1.18 1.18 ų 0.05 ₩ 1.16 끳 0 Ш 1.14 -0.05 1.12 1.1 0.14 (2000 0.12 (2000 0.12 0.12) 0.12 0.12 1.08 FCC-hh TileCal only 1.06 1.04 π 0.1 1.02 <u>42.4%</u>⊕ 3.3% 0.08 Ebeam 10 0.06 0.04 <u>24.7%</u>⊕ 0.7% 0.02 production √Ê_{bear} 0 10² 10³ 10 E [GeV]

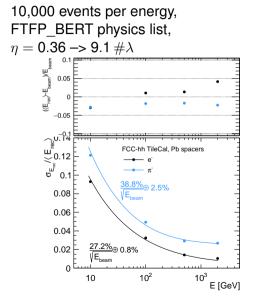

- *E*₀, *k* energy threshold/ multiplicity of π⁰ production
- increasing EM fraction with increasing energy

How can we achieve compensation?

- 1. Increase response to neutrons by increased fraction of hydrogen in Scintillator
- 2. Suppression of EM response by higher Z absorber


-> spacer of HCAL in Pb: $X_0=0.6 \text{ cm}, \lambda=17.59 \text{ cm}$ (Fe: $X_0=1.8 \text{ cm}, \lambda=16.77 \text{ cm}$)

–> λ_{eff} of HCAL Barrel increases to 20.87 from 20.59 cm ($\eta = 0.36$)


Expected compensation	
● Fe:Sci ≈ 20:1	
● Pb:Sci ≈ 4-5:1	

Material budget of the HCAL B + EB

Pb spacers: X_0 increases by ~ 50%, minor decrease in $\#\lambda$ full Pb HCAL: X_0 increases by ~ 150%, still little change in $\#\lambda$

HCAL B performance with Pb spacers for e^- and π^-

$$E_{reco} = \sum_{i=1}^{hils} E_i / a \tag{2}$$

•
$$a_{EM,hadron} = 3.2\%, 2.7\%$$

• *e*/*h* = 1.1

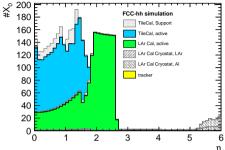
- constant term decreased from 3.3 to 2.5 %
- -> need test performance in combined system

Arguments pro Pb

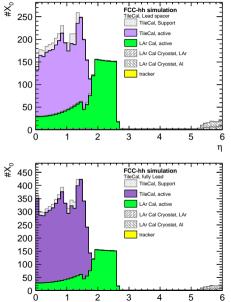
- Pb structures constructible!
- higher Z material not an issue for timing (50 ns in SPACAL)
- steel structure not needed as return yoke

FCC-hh full detector simulations

ECAL B, EC

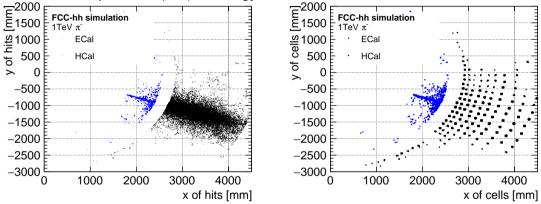

LAr/Pb 3(-5.6)mm/2mm 8, 6 layers $\Delta\eta \times \Delta\Phi$ 0.01 \times 0.01

HCAL EC


 $\begin{array}{c} {\sf LAr/Cu}\\ {\sf 3mm/2cm}\\ {\sf 6 \ layers}\\ {\sf \Delta}\eta\times{\sf \Delta}\Phi\\ {\sf 0.025}\times{\sf 0.025} \end{array}$

HCAL B, EB Sci-tile/stainless Steel 1/4.710, 8 layers $\Delta \eta \times \Delta \Phi$ 0.025×0.025

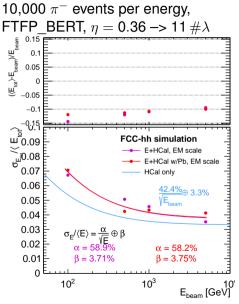
Material budget of FCC-hh full B+EB+EC



- ECAL thickness: $30 \# X_0$
- E+HCAL thickness: 115 – 150 – 300 #X₀ -> needs study of muons
- E+HCAL thickness: ~ 11 $\#\lambda$ – for all Pb options
- approx. 1.5 $\#X_0$ in front of ECal
- good η coverage, dip in #λ at η = 1.7 requires optimisation (longer HCAL EB?)

LAr ECal + TileCal simulations

from Geant4 depositions (hits) to energy in Calorimeter cells



EM showers are contained in ECAL (30 $\#X_0$)

Not included in the simulation yet:

- electronics noise
- pile-up noise

E+HCal Resolution and Linearity

- degraded resolution compared to HCAL only: impact different sampling, EM scale (e/h ≠ 1)
- 0.25 #λ / 1.5 #X₀ passive material between E and HCal
- comparable to ATLAS results: $\alpha = 52.1 \pm 5.5\%, \beta = 1.9 \pm 0.3\%$
- Pb spacers no effect on resolution, but linearity improves

Next steps:

- 1. Correction for lost energy needed
- 2. Clustering algorithm for jet reconstruction

Summary & Outlook

FCC-hh hadron calorimeters have to

- survive harsh radiation environment $\sim 5 \times 10^{14}$ neq
- perform precise jet reconstruction of boosted objects

First (reference) calorimeter system tested in simulations

- containment of 10 TeV hadron showers ensured
- combined hadron reconstruction need further corrections

Next steps

- implementation of other calorimeter options in FCCSW
- tests including pile-up
- jet reconstruction with particle flow algorithms

Summary & Outlook

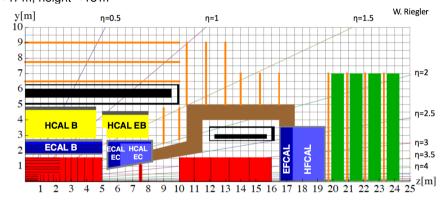
FCC-hh hadron calorimeters have to

- $\bullet~$ survive harsh radiation environment $\sim 5\times 10^{14}\,\text{neq}$
- perform precise jet reconstruction of boosted objects

First (reference) calorimeter system tested in simulations

- containment of 10 TeV hadron showers ensured
- combined hadron reconstruction need further corrections

Next steps


- implementation of other calorimeter options in FCCSW
- tests including pile-up
- jet reconstruction with particle flow algorithms

Thank You!

Backup!

FCC-hh detector

baseline FCC week Berlin May 2017 total length ~47 m, height ~18 m

NAME	Technology	η coverage	# long.layers	Δη x Δφ	# channels (x10°)
ECAL B	LAr / Pb	< 1.7	8	0.01 x 0.012	1.3
ECAL EC	LAr / Pb	1.5 – 2.5	6	0.01 x 0.012	0.6
HCAL EC	LAr / Cu	1.7 – 2.5	6	0.025 x 0.025	0.1
EFCAL	LAr / Pb	2.3 - 6.0	6	0.025 x 0.025	0.5
HECAL		22 60	6	0.05 × 0.05	0.1

18/16