

High-granularity hadronic calorimeter for tens-of-TeV jets at a 100 TeV pp collider

S.Chekanov (ANL)

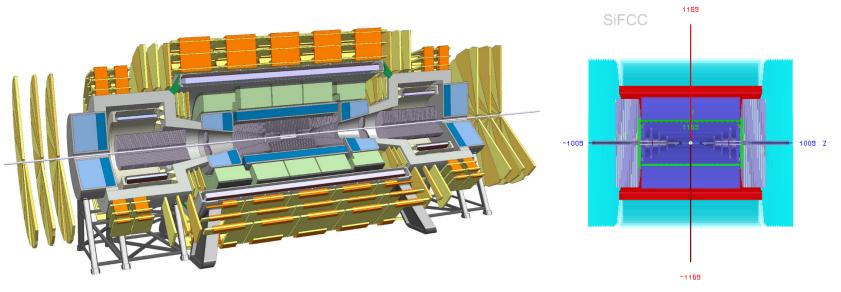
FCC week, 29 May - 2 June 2017, Berlin, Germany

With contributions from: D.Blyth (ANL), A.Kotwal(Fermilab/Duke), N.Tran (Fermilab), S.Yu(NCU), J.Repond (ANL), J.Proudfoot (ANL), M.Demarteau (ANL), J.McCormick (SLAC), A.Dotti (SLAC), A.Ribon (CERN), A.Henriques (CERN)

Two 20 TeV jets in ~12 λ_1 calorimeter

Detector requirements driven by physics at 100 TeV

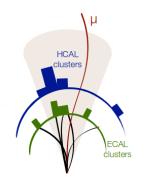
- Good containment up to $pT(jet) \sim 30$ TeV: 12 λ_1 for ECAL+HCAL
 - affects jet energy resolution
 - leakage biases, etc.
- Small constant term for HCAL energy resolution
 - dominates jet resolution for pT>5 TeV, important for searches of heavy particles
 - single-particle studies using ATLAS-like design indicate that < 3% is achievable
- Longitudinal segmentation:
 - Not studied
- Good transverse segmentation for resolving boosted particles:
 - baseline is $\Delta \eta \propto \Delta \phi = 0.025 \times 0.025$ from Delphes fast simulations
 - current baseline 5x5 cm assuming ~ATLAS-like inner radius (~2.3 m from IP)


Study these questions using realistic Geant4 simulations and reconstruction

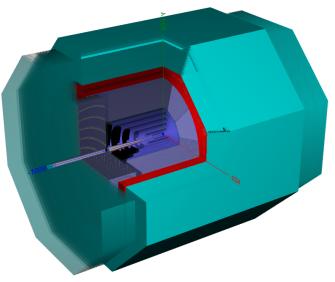
Detector simulations for 100 TeV physics

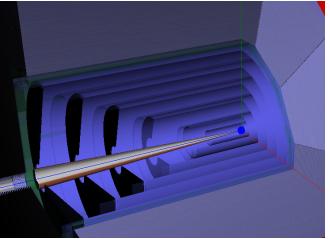
FCC-hh reference detector

SiFCC: performance detector

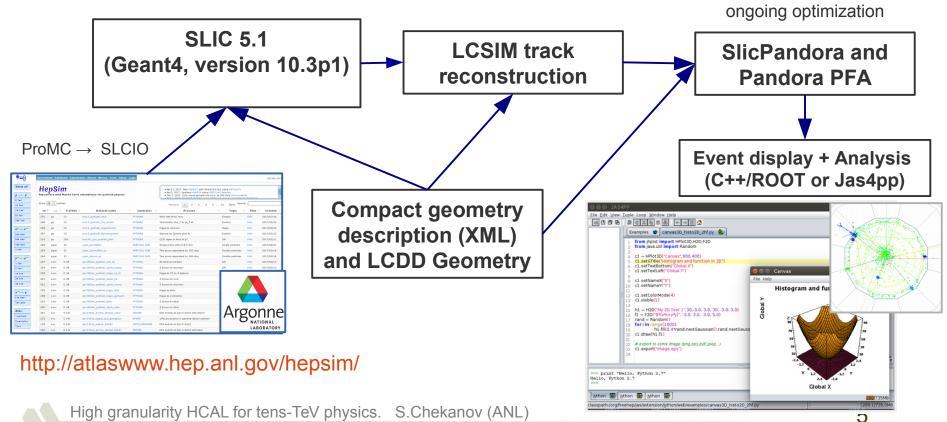

- Larger than ATLAS
- Optimized forward region
- Twin solenoid + forward dipoles
- Fast detector simulations

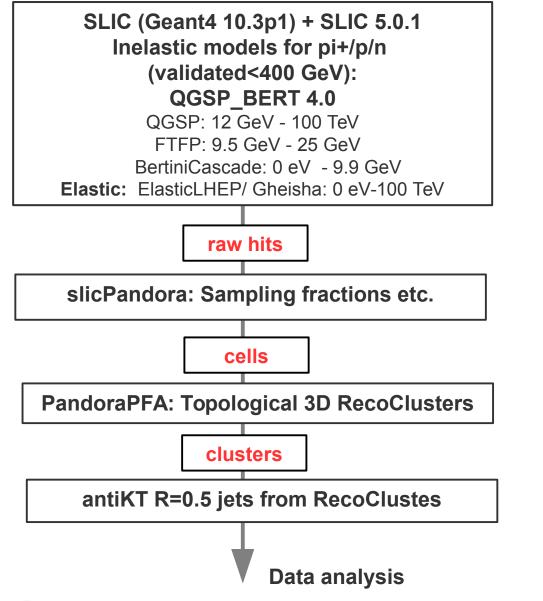
- Derived from the SiD/CLIC "all silicon" concept
- Compact (~20% smaller than ATLAS + muon det.)
- |η|<2.5 optimized for 100 TeV collisions
- Playground for various detector designs and technologies
- Fast turnover to modify the detector & create Monte Carlo events using HepSim
- Geant4 simulation & reconstruction since 2016


Characteristics of SiFCC (version 7)


http://atlaswww.hep.anl.gov/hepsim/detectorinfo.php?id=sifcch7

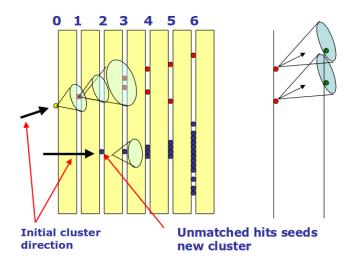
- 5 T solenoid outside HCAL
- Si pixel and outer trackers (5 + 5 layers):
 - 20 um pixel (inner), 50 um (outer)
- ECAL (Si/W): 2x2 cm. 32 layers, ~35 X0
- HCAL (Scint. / Fe) ~ FCC-hh reference
 - 5x5 cm cells: Δη x Δφ = 0.022 x 0.022 x4 smaller than for CMS & ATLAS
 - 64 longitudinal layers \rightarrow 11.3 λ_{μ}
 - 3.1% sampling fraction
- > 150 M non-projective cells (ECAL+HCAL)


S.V. Chekanov, M. Beydler, A.V. Kotwal, L. Gray, S. Sen, N.V. Tran, S.-S. Yu, J. Zuzelski. https://arxiv.org/abs/1612.07291. Click here to explore this detector in 3D



Event simulation and reconstruction

- SLIC simulation v5.1: updated for Geant 10.3p1 (J.McCormick, D.Blyth, W.Armstrong, S.C, etc)
 – updated for Geant 10.3p1, decoupled from ILCSOFT
- Fast LCSIM track reconstruction: (D.Blyth, J.McCormick, N.Graf, etc.)
 - 3-4 speed increase compared to the previous releases
- Fast PandoraPFA (J.Marshall, M.Thomson)
- Integrated with HepSim ProMC EVGEN files & deployed on OSG grid
- Analysis: C++/Root or Jas4pp (ANL,S.C,E.May). Based on Jas3 (SLAC)



Energy reconstruction in HCAL (SiFCC)

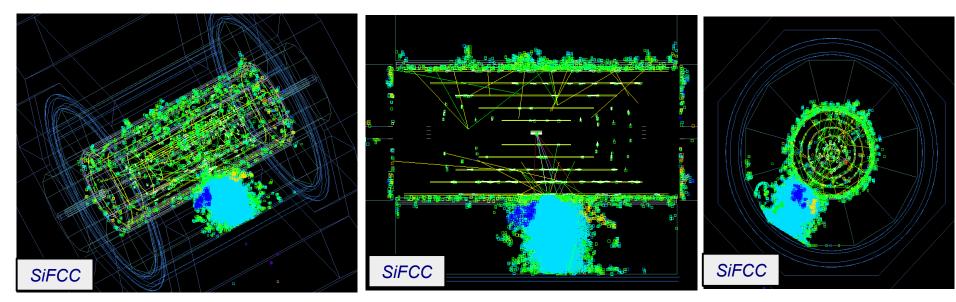
High granularity HCAL for tens-TeV physics. S.Chekanov (ANL)

From M.Thomson

Cone algorithm

Start from inner layer and work outward

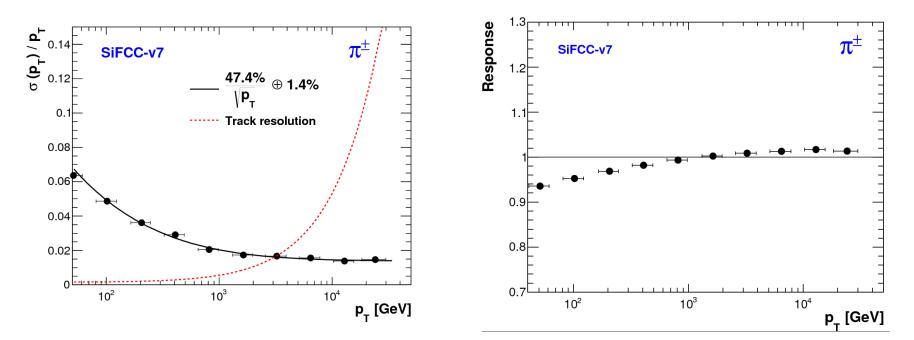
Notes:


- Birks' effect was not included for simulation of hits
- Min mip cut was applied on hits
- No timing information was applied

Response to single particles: 8 TeV pions

Example: True momentum of π + : 8.16 TeV

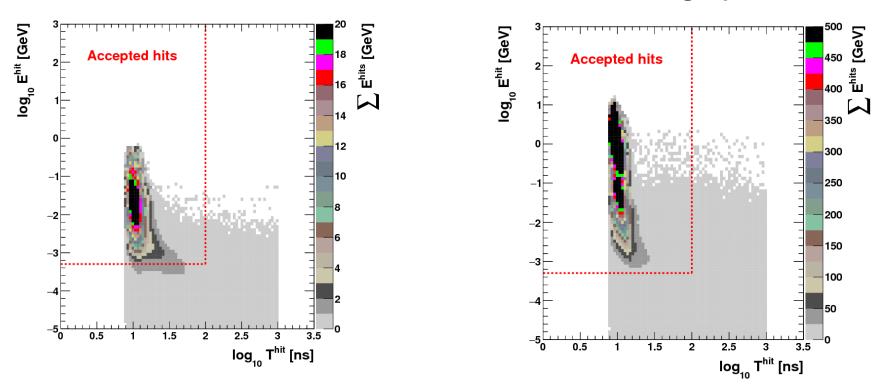
After SiFCC reconstruction (>1.5 M HCAL cells):


- ~30000 calorimeter hits, ~500 SiTracker hits
- 1 reconstructed PFA (pi+) P=8.97 TeV
- 1 reconstructed CaloCluster at P=8.40 TeV
- Many back-splash interactions

Based on HepSim: http://atlaswww.hep.anl.gov/hepsim/info.php?item=201

Response to hadrons: π^{\pm}

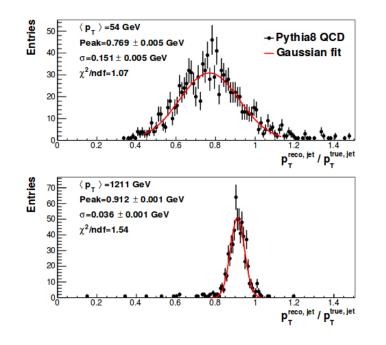
- Single pi+ randomly distributed in eta & phi
- pT is reconstructed by collecting energies from all RecoClusters

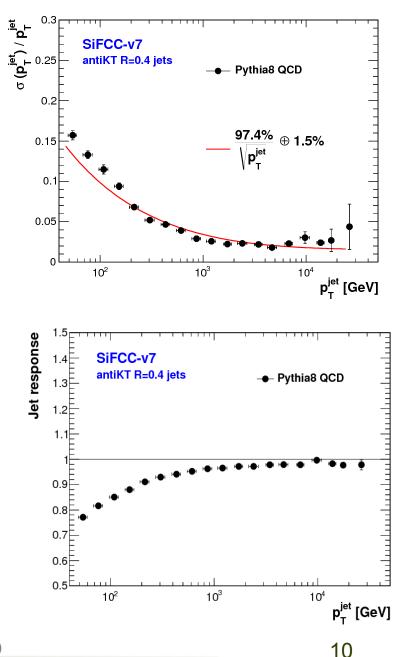


- ~47% sampling term, 1.4% constant term
 - sampling term is consistent with ATLAS-like setup (arXiv:1604.01415)
- Calorimeter resolution is better than for SiTracker for pT>3 TeV
 - Tracker: outer radius R=2.1 m, 5 T solenoid, 25 um pixel size
- Calorimeter response is non-linear \rightarrow should be corrected by MC (e/h, material correction etc.)

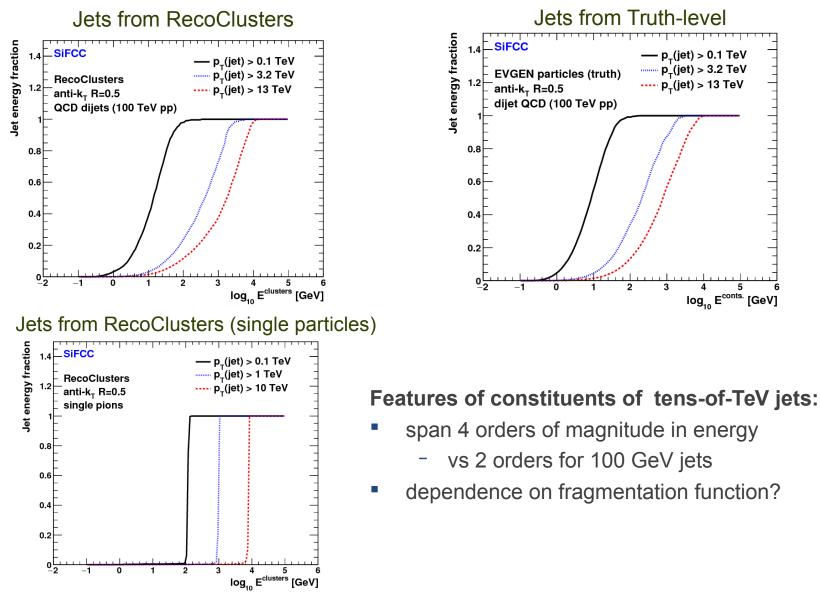
Hit energy vs hit time for single pions

120 GeV single pions


Associate hits from SLIC (before applying sampling fraction) using anti-kT algorithm running over RecoClusters created by single pions

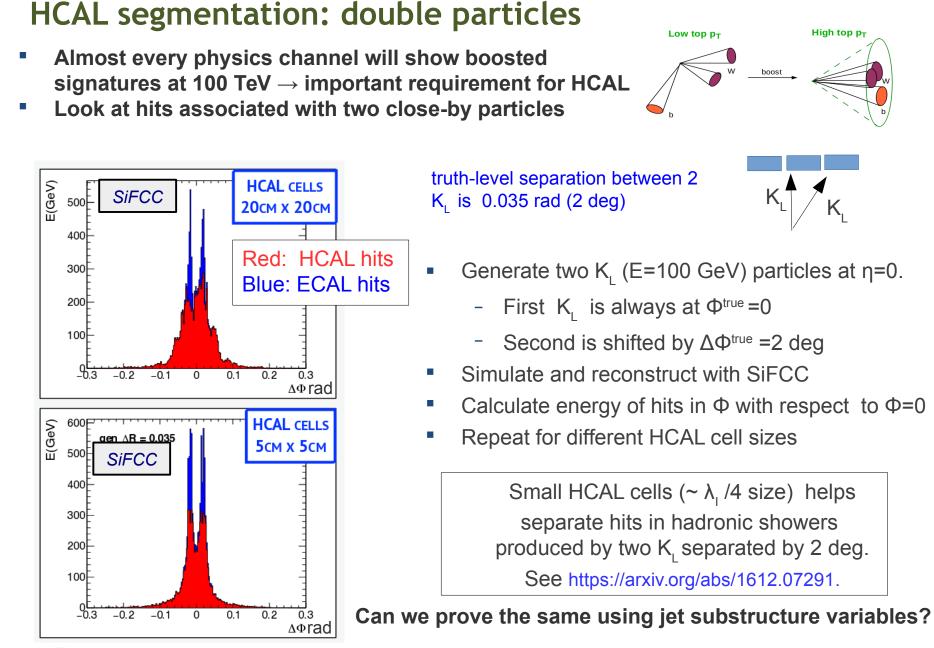

8.2 TeV single pions

No significant contribution from hits > 100 ns


Jet resolution and response

- Jet resolution and response were determined using Gaussian fits
- Jet energy resolution is similar to ATLAS jets before correction ("EM" scale) for pT<1 TeV
- Constant term ~2% can be achieved, but the fit with sampling term is not ideal
- Jet response ~1 at large pT

Differences between jets & single particles


High granularity HCAL for 100 TeV physics

- Baseline for past & operational detectors:
 - transverse cell size is similar or larger than nuclear interaction length: λ_1
- Recent high-granularity HCAL: CALICE R&D:
 - 2x2 or 1x1 cm cell sizes required to reconstruct PFA & separate particles
- Main question for a 100 TeV collider:

Can reconstruction of jets and particles at tens-TeV scale benefit from small HCAL cells?

Several simulations with ECAL cells 2x2 cm while HCAL cell sizes were varied:

SiFCC detector version (Fe/Scin. HCAL)	Transverse size of HCAL cells (cm or ΔηxΔφ)	Transverse size of HCAL cells in λ _ι	Simulation tag in HepSim
SiFCC-v7 (baseline)	5X5 cm (ΔηxΔ $φ$ = 0.022 x 0.022)	$\sim \lambda_{_{\rm I}}/4$	rfull009
SiFCC-v8 (traditional)	20x20 cm (Δηx $\Delta \phi$ = 0.1 x 0.1)	~ λ _ι	rfull010
SiFCC-v9 (as ECAL)	2x2 cm (ΔηxΔ $φ$ = 0.01 x 0.01)	λ _ι /8	rfull011
SiFCC-v10 (fine)	1x1 cm (ΔηxΔ $φ$ = 0.005x 0.005)	λ _ι /17	rfull012

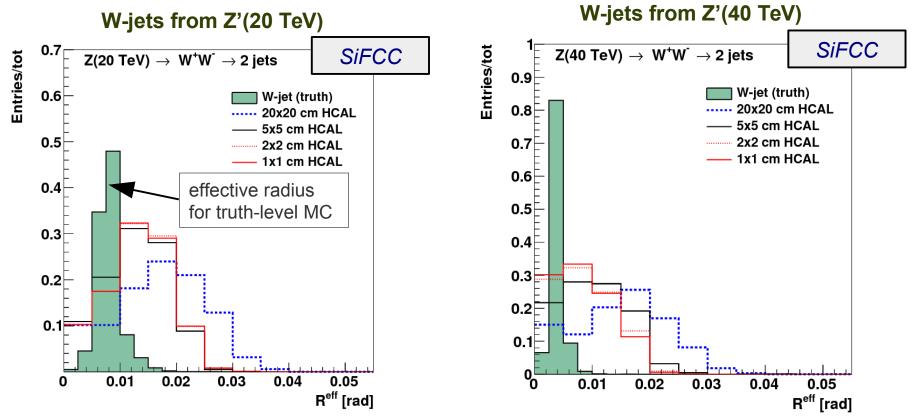


High granularity HCAL for tens-TeV physics. S.Chekanov (ANL)

High top p_T

Event display of Z' (40 TeV) $\rightarrow q\overline{q}$

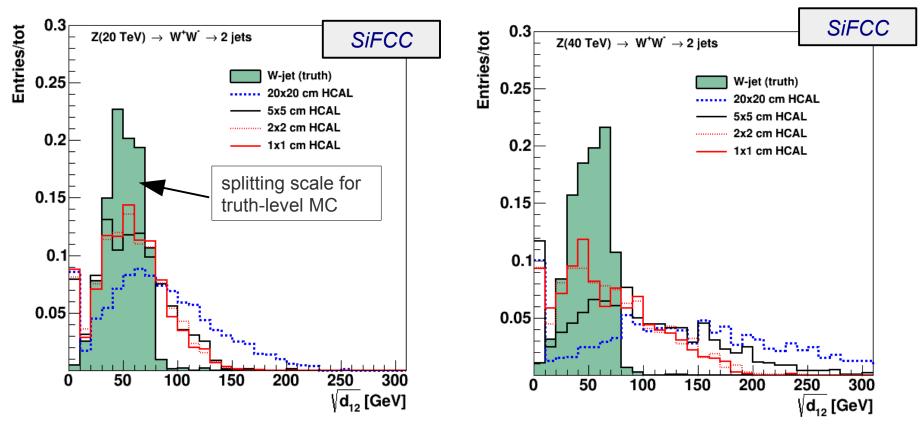
Busy event, large number of back-splash interactions in ECAL/HCAL/Tracker \sim 4 CPU*h to simulate/reconstruct one event \rightarrow CPU intensive!



ECAL

Effective jet radius for antiKT5 jets

Sum over all distances between energy deposits and jet center, weighted with E(const) / E(jet)


- Jets with pT>10,20 TeV, each from W decays $(q\overline{q})$
- Narrow ($\Delta R \sim 2^* \text{ pT} / M(W)$) compared to QCD jets (not shown)
- 5x5 cm cells ($\Delta\eta x \Delta \phi = 0.022 \times 0.022$) show improvement compared to $\Delta\eta x \Delta \phi = 0.1 \times 0.1$ (ATLAS)
- Small difference between 2cm and 1cm cell sizes

Jet splitting scale: d₁₂

K_T scale at which a jet splits into 2. Used to differentiate QCD jets from 2-body decays (W,H,etc)

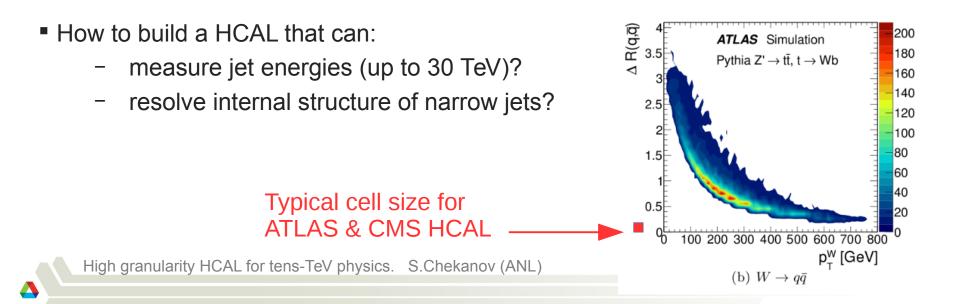
W-jets from Z'(20 TeV)

W-jets from Z'(40 TeV)

- Jets with pT>10,20 TeV, each from W decays (qqbar)
- 5x5 cm cells ($\Delta\eta x \Delta \phi = 0.022 \times 0.022$) show improvement compared to $\Delta\eta x \Delta \phi = 0.1 \times 0.1$ (ATLAS)
- Small difference between 2cm and 1cm cell sizes

Summary

- Some aspects of single particles and jets have been studied in transverse momentum up to 30 TeV using SiFCC detector → files publicly available from HepSim
- Studies of single particles (p,n, π , γ ,e..) in the range 2 GeV 33 TeV:
 - Resolution and energy response were studied
 - Good performance in the range 2 GeV 33 TeV: No leakage, constant term below ~2 %
- Studies of AntiKT5 jets in the range 50 GeV 26 TeV:
 - Constant term of 2% can be achieved (without including readout infrastructure)
 - Working with Geant4 and SLIC developers to understand timing of hits and its impact on realistic readout
- Jet substructure studies for jets up to 20 TeV:
 - Optimal HCAL cell size is $\Delta \eta \propto \Delta \phi = 0.022 \times 0.022$ (vs $\Delta \eta \propto \Delta \phi = 0.1 \times 0.1$ for ATLAS)
 - confirm previous FCC-hh studies based on fast simulations
 - smaller cell sizes show less improvements
- Work on cost-effective options for signal readout (fibers+SiPMT) is ongoing



Backup

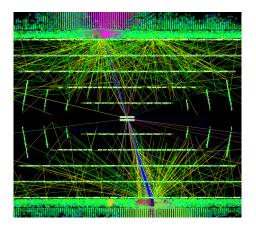
Hadronic calorimeter (HCAL)

- Strong interactions make jets
 - billions of jets with > 2 TeV at future colliders (28-100 TeV CM energy)
- Higgs, W, Z, top (pT>2 TeV) decay to narrow jets with jet radius smaller than 0.2 in $\varphi x \eta$. Such narrow jets have substructure (2 or 3 subjets)
- Physics goals of future colliders search for particles with masses 10-50 TeV that can decay to Higgs, W, Z, top decays

 \rightarrow narrow jets with pT>5-25 TeV from Higgs, W, Z, top

SiFCC detector

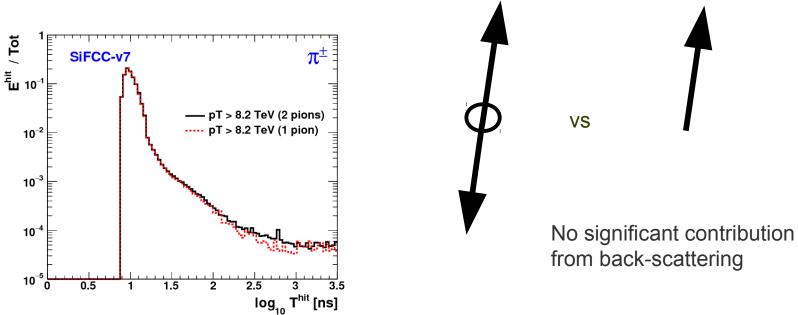
https://arxiv.org/abs/1612.07291

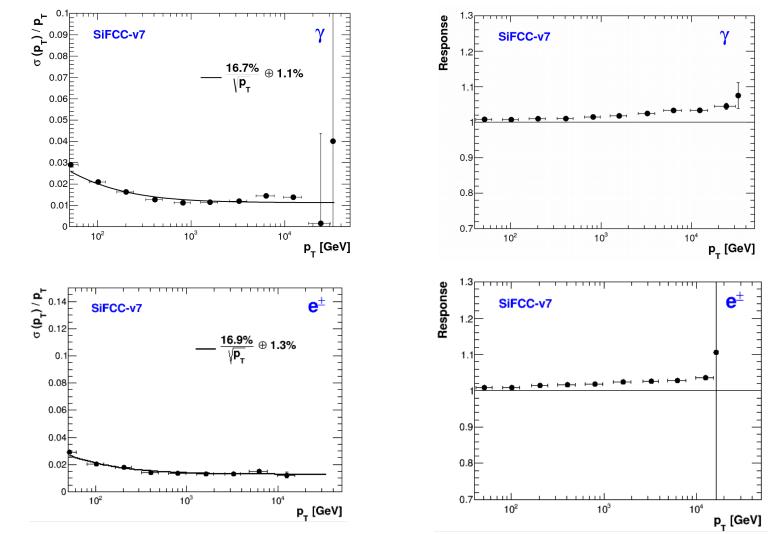

Table 1: Technology and dimensions of the SiFCC sub-detectors in the barrel region. The solenoid field is given inside and outside the solenoid, respectively.

Barrel	Technology	pitch/cell	radii (cm)	z size (cm)
Vertex detector	silicon pixels/5 layers	$25 \ \mu m$	1.3 - 6.3	38
Outer tracker	silicon strips/5 layers	$50 \ \mu m$	3 9 - 209	921
ECAL	silicon pixels+W	$2 \times 2 \text{ cm}$	210 - 230	976
HCAL	scintillator+steel	$5 \times 5 \text{ cm}$	230 - 470	980
Solenoid	5 T (inner), -0.6 T (outer)	-	480 - 560	976
Muon detector	RPC+steel	$3 \times 3 \text{ cm}$	570 - 903	1400

Table 2: Technology and dimensions of the SiFCC sub-detectors for the endcap region.

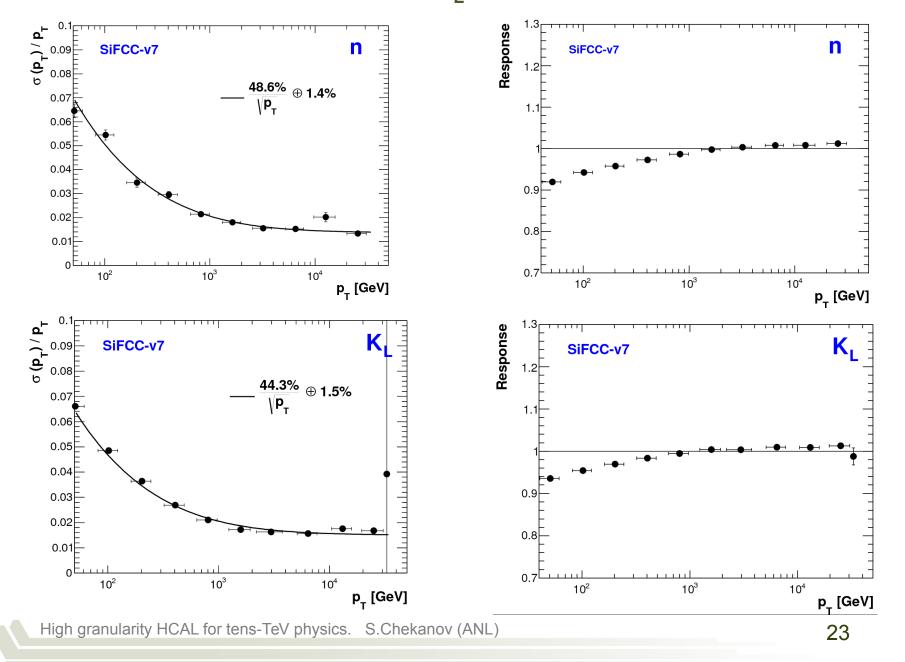
Endcap	Technology	pitch/cell	$z ext{ extent}$	outer radius
			(cm)	(cm)
Vertex detector	silicon pixels	$25~\mu{ m m}$		
Outer tracker	silicon strips	$50 \ \mu m$		
ECAL	silicon pixels+W	$2 \times 2 \text{ cm}$	500 - 516	250
HCAL	scintillator+Steel	$5 \times 5 \mathrm{~cm}$	518 - 742	450
Muon detector	RPC+Steel	$3 \times 3 \text{ cm}$	745 - 1010	895
Lumi calorimeter	m silicon+W	$3.5 \times 3.5 \text{ mm}$	495 - 513	20
Beam calorimeter	semiconductor+W	$3.5 \times 3.5 \text{ mm}$	520 - 539	13


Can back-scattering explain slow hits in jets?


Two back-to-back jets with pT=20 TeV. Straight lines show Geant4 (truth level) particles

Test:

Compare hits from single-particles with hits from two particles where 2 particles are separated by 180 deg


Single particle resolution and response ($e/\gamma/\pi^{0}$)

- Reasonable performance of ECAL: ~17% sampling term, 1.3% constant term
- Tracking is not used for electrons

Δ

Response to neutrons and K₁

The time structure of hadronic shower

Recently published by the CALICE collaboration

http://iopscience.iop.org/article/10.1088/1748-0221/9/07/P07022/pdf

Summary:

- Slow component of hadronic shower can extend to ~few hundred of ns due to:
 - evaporation neutrons, decay of meta-stable nuclear states etc.
- The late component is predominantly concentrated at lower hit energies
- Late components of hadronic showers, which are substantially more pronounced in tungsten than in steel (SiFCC has tungsten ECAL)
- QGSP-BERT physics list, which is widely used for LHC and linear collider detector simulations, substantially overestimates the amount of late energy depositions in tungsten.

\rightarrow was fixed in Geant 10.3p1

Working with Geant4 developers (A.Dotti, A.Ribon) to understand this issue