

FCC Special Technologies WP3 (Beam Transfer Challenges) Summary

M.J. Barnes

Acknowledgements: M. Atanasov, J. Borburgh, A. Chmielinska, T. Fowler, B. Goddard, J. Holma, T. Kramer, J. Rodziewicz, A. Sanz UII, Pieter van Trappen, D. Woog

Special Technologies WP3 BEAM TRANSFER CHALLENGES

- WU 3.1: Kicker Generator with Solid State Switch Technology;
- WU 3.2: Kicker Magnet R&D
- WU 3.3: Septum Magnet R&D
- WU 3.4: Fast Electronics, Triggering and Switch Controls

WU 3.1: Kicker Generator with Solid State Switch Technology

Two options for Solid State Switch Technology, both with modular design, under consideration:

- Activity 1: Marx Generator Concepts (ISEL & EPS, Portugal):
 - Application for funds under Portugal 2020 program unsuccessful in 2016: reapplying May 2017. Nevertheless, EPS continuing with R&D;
 - Characterization of SiC MOSFETS ongoing;

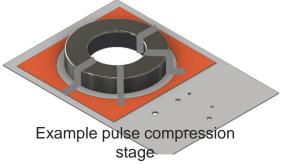
Three paraller SIC MOST L 13

- Current sharing studies for parallel SiC MOSFETs;
- > Currently designing 2-3 Marx stage assembly for testing at full current.
- Note: supplied a high-repetition rate Marx generator for high repetitionrate breakdown studies.

25

WU 3.1: Kicker Generator with Solid State Switch Technology

Activity 3: Inductive Adder Prototype Development:


		Start
General IA system analysis and basic parameter definition	\checkmark	
Setup of test environment	\checkmark	
Evaluation and characterization of critical components	\checkmark	
a) insulation gap material	\checkmark	
b) magnetic core material	\checkmark	
c) Semiconductor switches and driver circuits	✓ *	
d) HV pulse capacitors	\checkmark	
Selection of prototype components	\checkmark	
Production of PCB and mechanical parts for prototype layers		5/2017
Assembly of prototype layers		9/2017
Test and measurements on prototype layers		11/2017
Design update and production of full scale prototype		4/2018
Validation of full scale prototype		9/2018

WU 3.1: Kicker Generator with Solid State Switch Technology

- Activity 2: Advances in pulsed power generators and switch technology:
 - Magnetic pulse compression
 - High rate of rise current ongoing studies
 - High reliability switch topologies
 - > No progress low priority

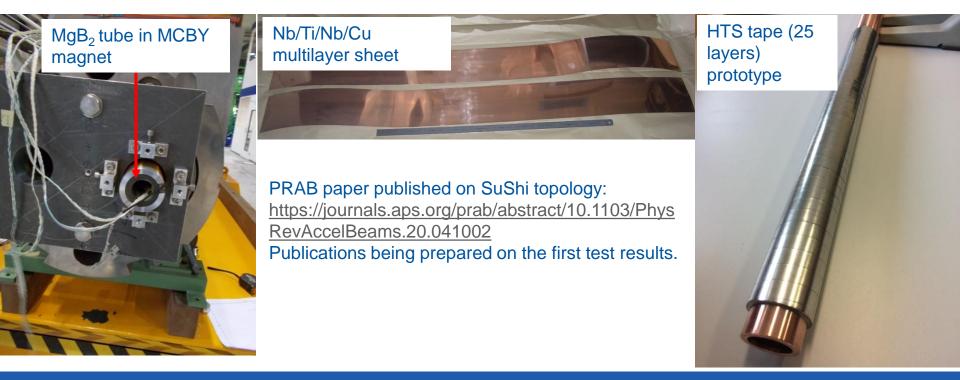
- Faraday effect fast Current Transformer (<u>expressed interest to ETHZ</u>) very promising for measurement of fast pulsed current with high precision
 - ETHZ plan to start a PhD project focussing only on the current sensor: there may be a chance for ETHZ to obtain SNF funding for such a project starting in 2018.

WU 3.2: Kicker Magnet R&D

PhD student commenced in August 2016:

		Start
Definition of key parameters for FCC injection kicker magnets, in parallel with the specification of the pulse generators	 ✓ 	
Confirmed need for a beam screen to shield ferrite yoke, for anticipated beam spectrum	 ✓ 	
 Develop the beam screen to achieve: > adequately low, broadband, beam coupling impedance; > fast field rise and fall times; > acceptable high voltage behaviour. 		5/2017
Construct a prototype beam screen for installation in existing magnet (first prototype MKI?).		8/2018
Test the prototype in the laboratory: beam impedance measurements and high voltage tests.		2/2019

WU 3.3: Septum Magnet R&D

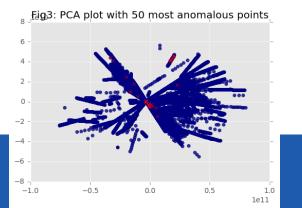

		Start
Lambertson based solution (presented at FCC week 2016)	✓	
Massless septa	~	Optimization ongoing
 Superferric solutions: Stealth topology proposed by Texas A&M University (P. McIntyre) Truncated half cosine with iron orbiting beam screen by GSI (K. Sugita) 		Ongoing Currently a low priority for GSI
 Superconducting Shield (SuShi) – in collaboration with the Wigner Institute (HU) ➢ MgB2 solid tube; ➢ HTS (GdBCO) tape wound on Cu tube carrier; ➢ Nb/Ti/Nb/Cu multi layer sheet, to be formed into a tube prior to testing. 	Tested In test	Ongoing

WU 3.3: SuShi Septum

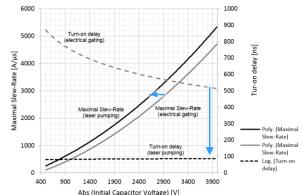
- First MgB2 prototype tested in February 2017 in SM18 up to 2.6 T;
- Second GdBCO prototype currently being tested at SM18;
- Third Nb/Ti/Nb/Cu multilayer sheet currently in production. Delivery foreseen for May; prototyping ongoing regarding shaping techniques.

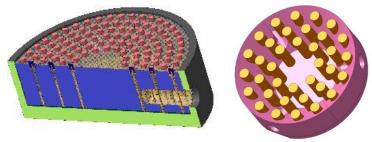
WU 3.4: Fast Electronics, Triggering and Switch Controls

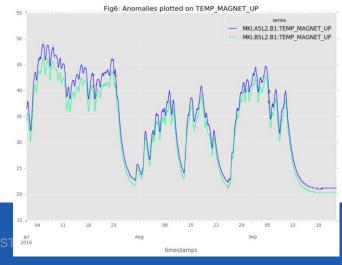
		Start/Comment
Cooperate with other groups at CERN with radiation hardened electronics experience to evaluate future control and triggering solutions		Ongoing
Study and test possible solutions to mitigate degradation by radiation.	Х	Not identified as a priority
 Studies of laser triggered thyristors ongoing: > light diffusers studies; > Construct a test-bench for high-power laser-pumped thyristor triggering 		Ongoing Ongoing Mid-2017
Develop an Artificial Intelligence prototype by using the logged data of an existing kicker installation		Ongoing


WU 3.4: Fast Electronics, Triggering and Switch Controls

Laser triggered thyristor:

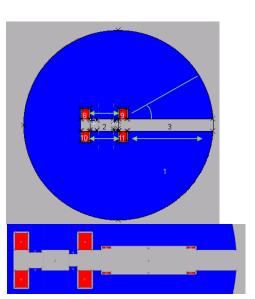

- Advantages shown by modified COTS thyristor
- Building proof-of-concept test bench, in-house laser diffuser being prototyped
- Low inductance thyristor clamp designed

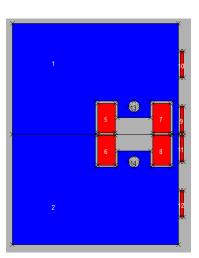

Anomaly detection by using Artificial Intelligence (AI) algorithms:


- Multi-year collaboration with University of Leuven (EDMS 1752095); master-student started 09/2016
- Presently focus on LHC Injection system
- Currently: anomaly classification and ranking

Thank you for your attention

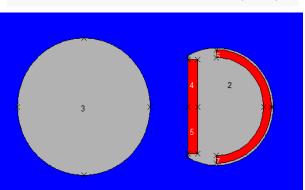
Iron dominated septa




Massless septum: For extraction: Proposed a half-open H-dipole (Pacman); Optimization ongoing:

- Transition "septum" region ≈ 1.5 times the gap height (1.5*26 mm) instead of 25 mm (Baseline)
- B < 2 T and leak field ≈ 1e-5 T

Injection (for missteered beams): backto-back version deflects beam to external dumps.


-40

Stealth septum (P. McIntyre) Benefitting from magnetisation of asymmetric window frame yoke. Septum conductor forces are taken by thin adjacent yoke leg

Truncated half cosine theta (GSI):

In need of working collaboration with GSI; slow, as SC septum currently a low priority for GSI

