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Introduction

@ Charged particles emit cone-shaped
Cherenkov Radiation along trajectory when

above ¢/n.

@ Light is absorbed by PMTs on detector
walls.

@ Primarily need to distinguish between e~ Figure: Interior of Super-K
and p~ light patterns: Detector in Japan

e Electron rings are fuzzy because trajectory
is scattered.

e Muon rings are well-defined because
trajectory is straight.

@ Current separation uses likelihood fit. Can

. . Figure: Muon and Electron
machine learning do better? &

Event Displays
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Convolutional Neural Networks (CNNs)

@ Basic neural network takes N inputs,
and optimizes weights of each input to
P possible classifications (P x N
matrix).

Figure: Summary of Neuron

@ No localization with this method, use Layers in a Typical CNN.

model based on mammalian visual
cortex instead:

@ Scan image with series of filters to
select out edges, colour gradients, etc.

@ Scan set of feature maps to select
shapes, and again to select objects.

@ C(lassify objects by passing output
through fully connected network.

Figure: Examples of filters used

@ Training process optimizes filters as well )
to scan image for features.

as neuron weights for classification.
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Data Processing

@ Want algorithm only to learn features
of the Cherenkov pattern.

@ Project PMT data onto a 30x30 image
in the transverse plane.

e Scale rings to the same radius in 4
data sets to reduce complexity.

@ Find vertex and direction through

standard analysis fitting procedure.

@ Train algorithm on 240,000 images, and
test on 160,000.

Figure: Conical projection of
PMT signal.
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Network Architecture

@ Very Simple Convolution Network
e One convolution layer with 5x5 filters
to separate smooth from sheer edges.
e Manually input filters to get algorithm
off the ground.
e One fully connected layer with 20
neurons before output prediction.

) Figure: Examples of initial filters
@ Simple because does not have to used by algorithm (usually left

connect edges into more complicated unchanged).
shapes.
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Algorithm Performance on Electrons
T

Algorithm Performance on Muons
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Figure: Efficiencies of identifying e~ and pu~ versus data set (red: standard
analysis, green: CNN).

@ Algorithm reaches same level of accuracy as standard analysis.
@ Standard analysis fails in set-1 muons when the rings are segmented.
e Total accuracy, Standard: 99.77%, Algorithm: 99.89%
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Conclusion

@ Image recognition via machine learning is a natural solution to a
visual problem.

@ Robust at learning features of Cherenkov emission without fine tuning.
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