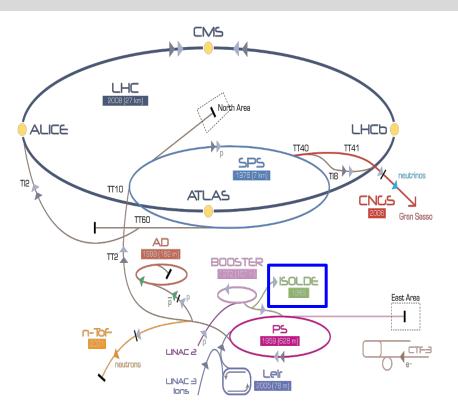
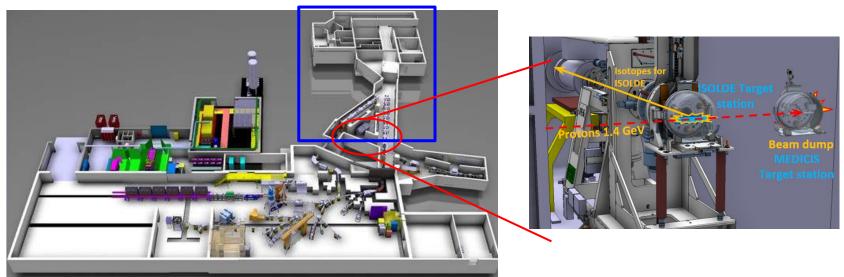
Validation and testing of the collection chambers for the CERN-MEDICIS project

Kritsana Srakaew

MEDICIS project, ISOLDE, CERN

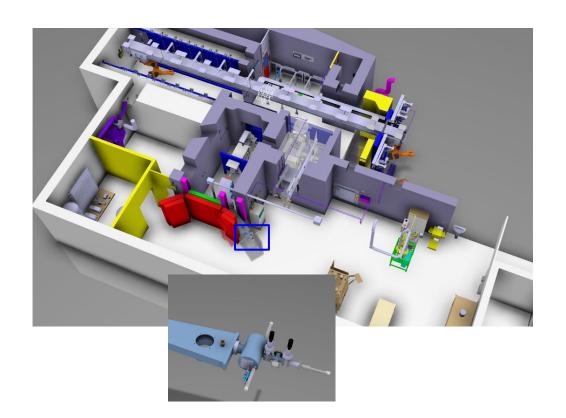
Advisors: PhD student Yisel Martinez, Prof. Thomas E. Cocolios

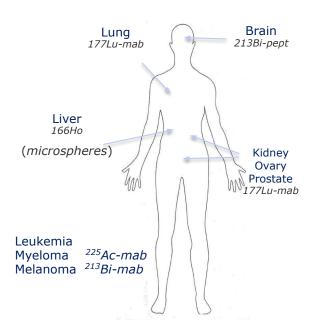



Outline

- MEDICIS facility and the ISOLDE experiment
- Purpose of this work
- Fluka transportation code
- Results
- Future work

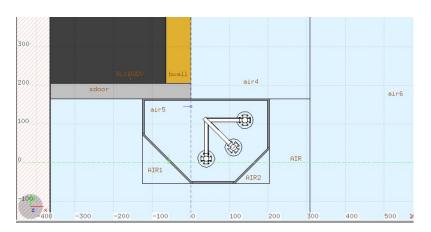
ISOLDE


MEDICIS



ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for many different experiments in the fields of nuclear and atomic physics, solid-state physics, materials science and life sciences.

MEDICIS facility

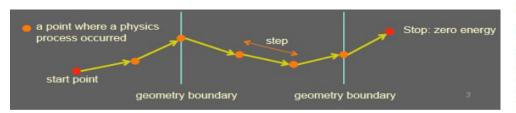


- produce radioisotopes for medical research
- design a collection chamber and transfer system for the radioactive isotopes

Purpose

To simulate the radiation from collected isotopes and calculate the dose a person may receive by using transport code simulation (Fluka) when the isotope has been collected.

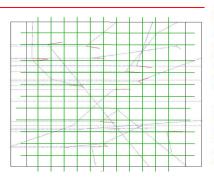
The geometry of chambers


System effected/ Syndrome	Symptoms	Dose
Nervous system CNS or Cerebrovascular Syndrome	Shock, severe nausea, disorientation, seizures, coma	100 Gy
G.I. system Gastrointestinal Syndrome	Nausea, vomiting, diarrhea, dehydration	10 Gy
Blood cells / bone marrow Hematopoietic Syndrome	Chills, fatigue, hemorrhage, ulceration, infections, anemia	3-8 Gy
Skin Erethema	Burning/ infection, sloughing of skin, hair loss	10 Gy
Ovaries/ Testes	Sterility	0.6-0.8 Gy 2-6 Gy

Manjit Dosanjh, Medical Applications-1, July 2016

- Absorption Dose (Gy) = 1 J/kg
- Equivalent Dose (Sv) = D*Q [Q is depend on radiation type]

Monte Carlo Radiation Transportation Code



- Total cross section → step length
- Differential & partial cross sections → final state
- Energy deposited (Magnetic and electric fields) → Dose

Dose computation

- Simulate particle histories until all particles have left the grid
- Store the amount of absorbed energy of each particle in each region

Gramma

Conversion Compton scattering **Photoelectric** Rayleigh scattering

$$\gamma \rightarrow e^{+} + e^{-}, \ \mu^{+} + \mu^{-}$$

 $\gamma + e^{-}(atomic) \rightarrow \gamma + e^{-}(free)$
 $\gamma + material \rightarrow e^{-}(free)$
 $\gamma + atom \rightarrow \gamma + atom$

Electron, Positron

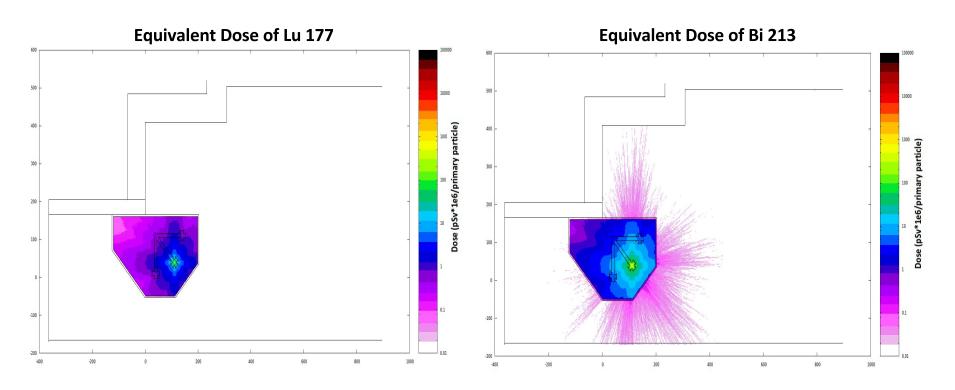
Bremsstrahlung Ionization Positron annihilation $e^+ + e^- \rightarrow \gamma + \gamma$

$$e^- + atom \rightarrow e^- + \gamma$$

 $e^- + atom \rightarrow e^- + ion + e^-$
 $e^+ + e^- \rightarrow \gamma + \gamma$

Muon

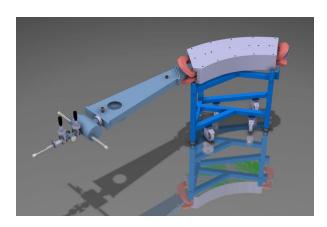
Pair production Bremsstrahlung Ionization


$$\mu^- + atom \rightarrow \mu^- + e^+ + e^-$$

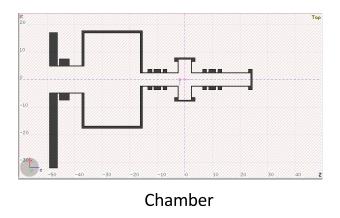
 $\mu^- + atom \rightarrow \mu^- + \gamma$
 $\mu^- + atom \rightarrow \mu^- + ion + e^-$

Charged hadron, ion

Bremsstrahlung Ionization


$$h^- + atom \rightarrow h^- + \gamma$$

 $h^- + atom \rightarrow h^- + ion + e^-$


Results

Future work

- make the geometry of the room and the beamline more realistic.
- Instead of using a radioactive point source, I will put the radioactive beam and metal foil from collect the isotope.

Beam line

In progress...

Acknowledgement

Thanks to

Mihaly Novak's lecture

Magdalena Kowalska's lecture

Manjit Dosanjh's lecture