Precision measurement of the Top quark mass at the FCC-ee

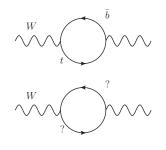
Nicolò Foppiani

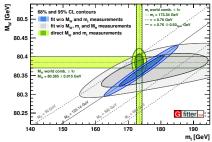
Scuola Normale Superiore - Pisa

Summer student session - August 10th, 2016

Supervisors: Patrizia Azzi (INFN PD), Patrick Janot (CERN), Luca Malgeri (CERN), Gigi Rolandi (CERN, SNS)

Precision Top quark physics

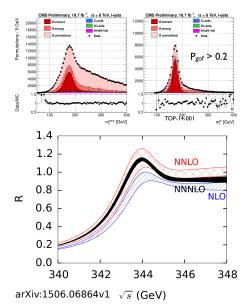

Why should we study the Top quark physics with high precision?


► The top quark is the heaviest particle in the SM

 \rightarrow quantum corrections brought by the top quark are the most important ones

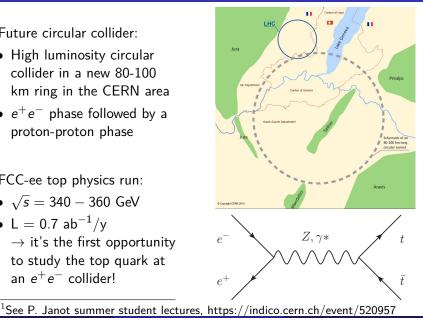
▶ Test the consistency of the SM
→ It's a way to discover new physics:
• inconsistency means new physics
• Explore energy scales that are

larger than the TeV scale (explored with pp collision at the LHC)

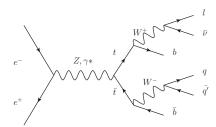


Top quark mass: pp collider vs e^+e^- collider

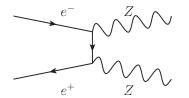
- ▶ pp collision:
 - Reconstruct the invariant mass of the decay products
 - Fit with the MC

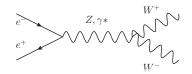

 \rightarrow big systematic error: you are measuring the parameter of the simulation, whose relation to the top mass is complicated

- Precision of $\simeq 500~{\rm MeV}$
- ▶ e^+e^- collision:
 - Scan the cross section as a function of the energy:
 → counting experiment!
 - Expected precision of $\simeq 10~\text{MeV}$


FCC-ee and top physics

- Future circular collider:
 - High luminosity circular collider in a new 80-100 km ring in the CERN area
 - e^+e^- phase followed by a proton-proton phase
- ► FCC-ee top physics run:
 - $\sqrt{s} = 340 360 \text{ GeV}$
 - $L = 0.7 \text{ ab}^{-1}/\text{v}$ \rightarrow it's the first opportunity to study the top quark at an e^+e^- collider!




What do the $t\bar{t}$ (and background) events look like?

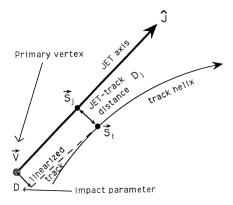
- Main features of the $t\bar{t}$ semileptonic decay channel:
 - One high energy isolated lepton
 - Missing 4-momentum (neutrino)
 - Four jets, two of which are **b-jets**
 - The invariant masses of the pairs have to be compatible with the W and the top masses

► The main background is produced by ZZ and WW events:

Goal: which is the reachable precision on the top quark mass at the FCC-ee?

- ► Simulation
- ► Reconstruction, simulation of the effect of the detector
- ► Analysis:
 - Selecting the events and the background \rightarrow efficiency and purity of the final sample
 - Fit the cross section to extract the **uncertainties** of the fit parameters
- ► Evaluate possible systematic uncertainties

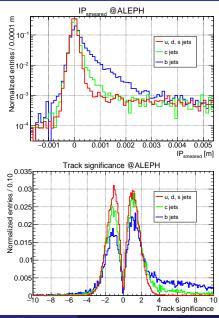
All the study is made within the FCC software framework


 \rightarrow so far I have been working mainly on the implementation of a b-tagging algorithm

How to do b-tagging

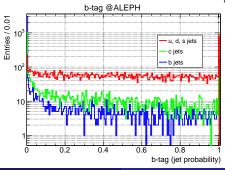
Basic idea: b-hadrons have long lifetime, so they usually decay far from the primary vertex

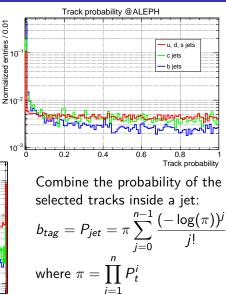
 \rightarrow Estimate the probability that a set of tracks comes from the primary vertex


- Calculate the impact parameter: basically it's the point of closest approach between a track and the primary vertex
- Calculate the probability that the **track** comes from the primary vertex
- Combine these probabilities to estimate the probability that the **jet** comes from the primary vertex

²For b-tagging see: D. Brown, M. Frank, *Tagging b hadrons using impact parameters, ALEPH note 92-135*

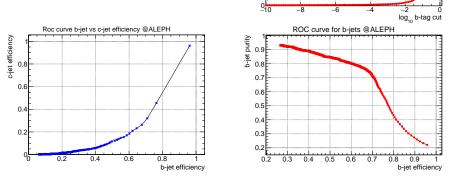
Implementing b-tagging in the FCC fast simulation


- Compute the IP with the MC track
- Apply a smearing, according to the parametrization of the resolution of your detector $\sigma_{ALEPH} = 25 \oplus \frac{95}{p} \mu m$
- Compute the track significance: $s = \frac{IP}{\sigma}$



Track probability and jet probability

• Probability that the track comes from the primary vertex: $P_t = e^{-\frac{s^2}{2}}$



8

b-tagging efficiency

- Consider different cuts on the b-tagging variable
- Study efficiency and purity varying the cut
- the choice of the cut is analysis dependent

0.8

0.6

0.4

02

9

Flavor efficiency tagging @ALEPH

u, d, s jets efficiency

c jets efficiency b jets efficiency

b jets purity

Conclusion and outlook

Summary

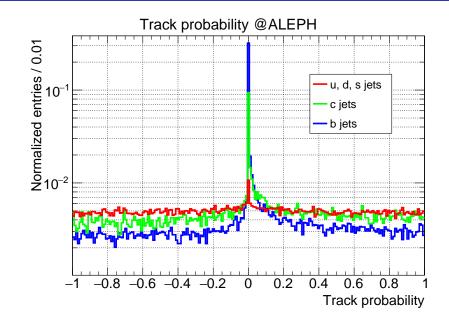
- Studying the Top quark physics is very important, both to test the consistency of the SM and to possibly discover new physics
- At FCC-ee it will be possible to measure the top-quark mass: with which precision?
- Only analytic estimates and extrapolations have been done so far, but now a MC study based on a fast simulation is in progress
- An algorithm to perform b-tagging has been implemented inside of the FCC fast simulation

Outlook

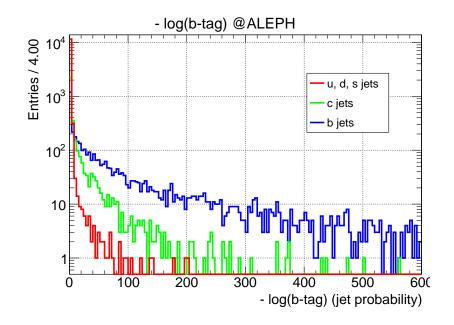
- Improve the performance by optimizing the track selection
- Use the algorithm in the MC analysis
- Study what resolution is required by a future detector to perform this measurement

Nicolò Foppiani

Top mass at the FCC-ee


Thanks for your attention

Any questions/suggestions?


Analysis steps

- Goal: which is the reachable precision on the top quark mass at the FCC-ee?
 - ► Simulation:
 - Generate signal and background samples according to the expected luminosity
 - You can use generators like Pythia8, Whizard*
 - ► Reconstruction, simulation of the effect of the detector:
 - Full sim: simulate each interaction between particles and detector
 - Fast sim: the effect of the detector is modeled applying smearing and cuts on the particles according to the resolution, efficiency and acceptance
 - You can use software like Delphes, Papas* (particle flow based)
 - ► Analysis:
 - Selecting the events and the background \rightarrow efficiency and purity of the final sample
 - Fit the cross section to extract the **uncertainties** of the fit parameters
 - Evaluate possible systematic uncertainties

Further details about track probability

-log(b-tag)

