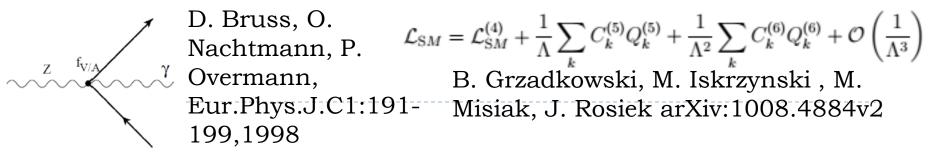
$Z \rightarrow 2l\gamma$ form factor at 8 TeV analysis validation

Eldar Ganiev

EP-UAT Summer Student Session 2016 August 10, 2016

Outline


- Motivation
- My goals
- Analysis
- Conclusion

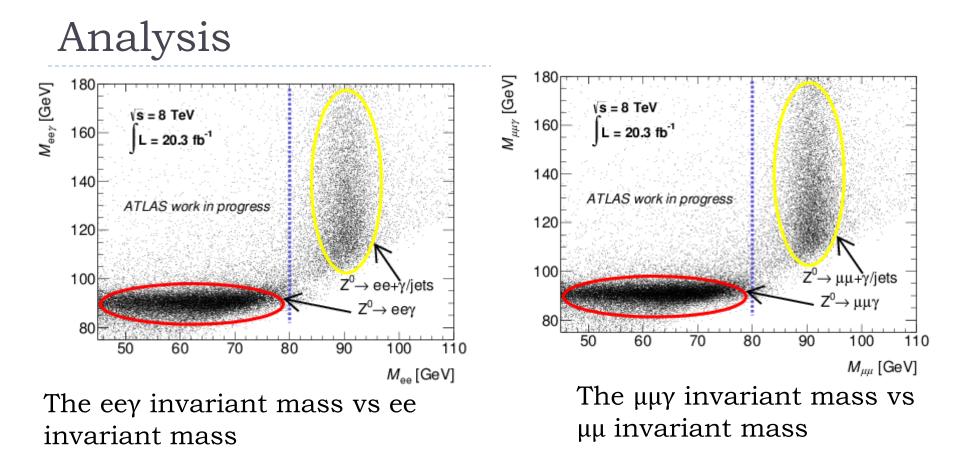
$$\langle f\bar{f}|J_Z^{\mu}|0\rangle = V_f(q^2)\bar{u}_f\gamma_{\mu} \left[\frac{I_{3f}(1-\gamma_5)}{2} - \hat{k}_f(q^2)\hat{s}^2Q_f\right]v_f$$

•Z decay to real lepton and virtual one
•Z→ll vertex depends on lepton virtuality
•This vertex function is called "form factor" V(Q)

[A. Sirlin, A.Ferroglia. Rev.Mod.Phys., V85 (2013): eq. (59) p.273]

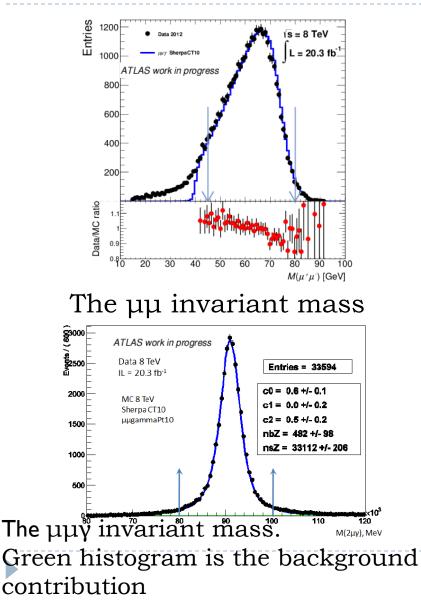
V(Q) is sensitive to interference effects from New Physics.

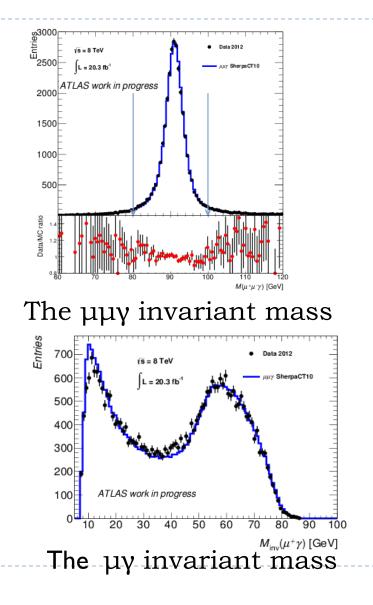
My goals

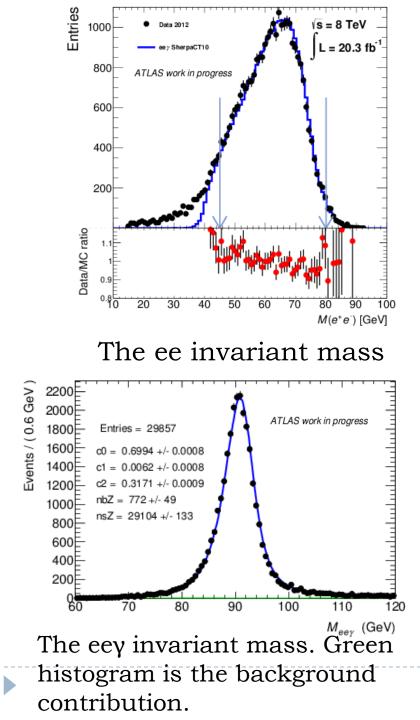

- The selection criteria described in the note (ATL-COM-PHYS-839) application to the 2012 data and MC.
- Analysis validation and comparison of results with the note. Cut flow tables.
- Atlas style application to all pictures and automation of the drawing procedure.
- 4. Events selection variation to study the systematical uncertainties.

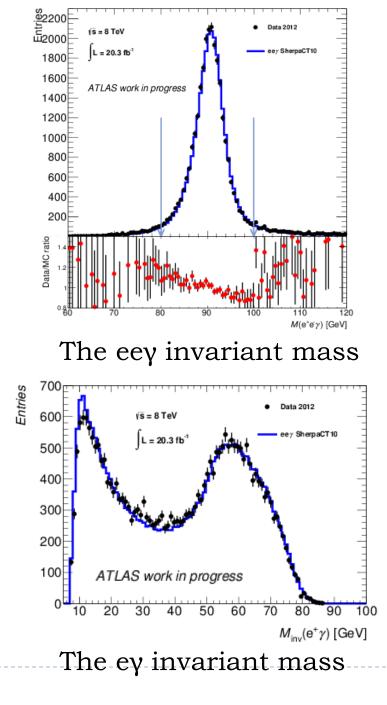
Events selection

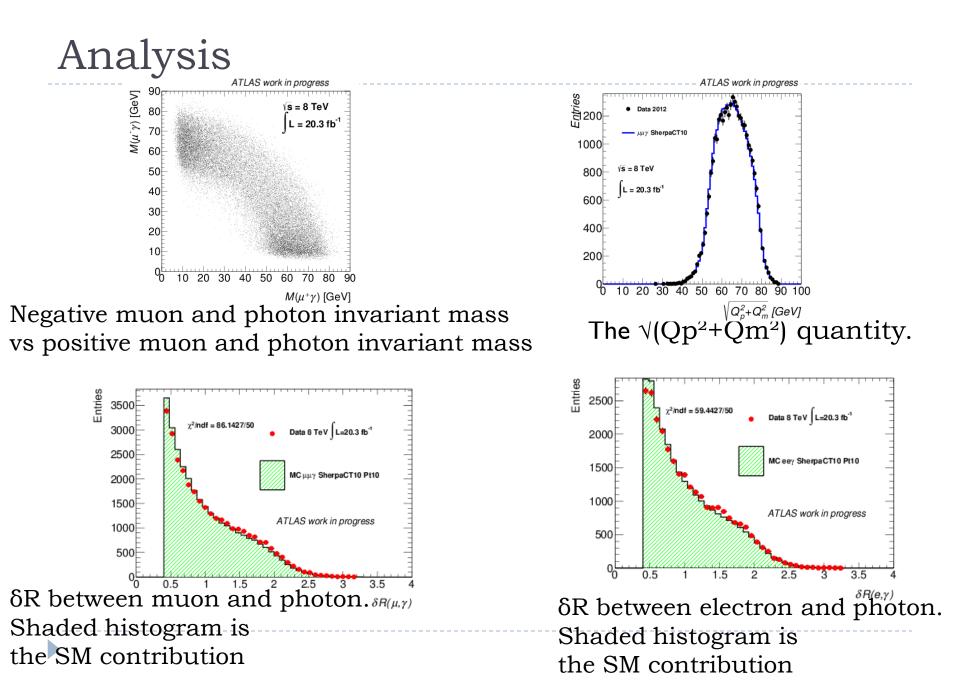
	$Z \rightarrow ee\gamma$	$Z \rightarrow \mu \mu \gamma$	
Triggers	EF_2e12Tvh_loose	EF_mu18_mu8_EFFS	
	EF_e24vh_medium	EF_2mu13	
	EF_e60_medium	EF_mu24i_tight	
		EF_mu36_tight	
Events Preselection	Apply All_Good GRL for all final states;		
	Remove all events that have LAr EventInfo error flag		
	(larError = 2 in D3PD);		
	Remove all events that have title $Error = 2$ in D3PD;		
	Remove all events that have coreFlags&0x40000!=0 in D3PD;		
	Remove Tile corrupted events passing other		
	quality criteria in periods G-J using;		
	Primary vertex with at least three tracks coming from a beam spot		
	$ \mathbf{d}_0 < 1 \ mm; Z_0 < 10 \ mm$		
Photon Selection	Photon with the highest P_t ; $P_t(\gamma) > 15 \ GeV$		
	$ \eta(\gamma) < 2.37$ excluding $1.37 < \eta(\gamma) < 1.52$; pass tight ID		
	$\delta \mathbf{R}(\gamma, l) > 0.4$; topoEtcone40(γ) < 4 GeV		
Lepton Selection	$P_t(e) > 10 \ GeV$; loose e	$P_t(\mu) > 10 \ GeV$	
	$ \eta(e) < 2.47$	$ \eta(\mu) < 2.37$	
	topoEtcone40(e)/ $E_t < 0.3$	topoEtcone40(μ)/ $E_t < 0.2$	
Invariant Mass	At least 1 photon $+$ 2e with	At least 1 photon + 2μ with	
	opposite sign	opposite sign	
	$\max(P_{t_1}, P_{t_2}) > 25 \ GeV$	$\max(P_{t_1}, P_{t_2}) > 25 \ GeV$	
	$45 \ GeV < M(ee) < 80 \ GeV$	$45 \ GeV < M(\mu\mu) < 80 \ GeV$	
	$80~GeV < M(ee\gamma) < 100~GeV$	$80~GeV < M(\mu\mu\gamma) < 100~GeV$	


Cut flow table

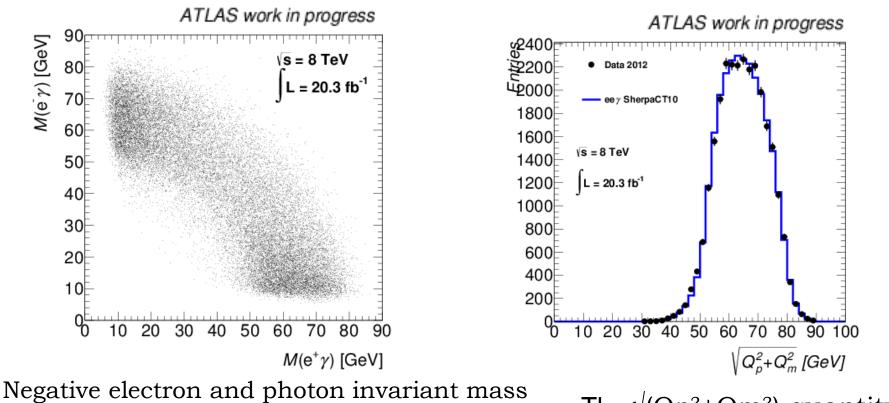

$\mathrm{Z} \rightarrow e e \gamma$		$Z \rightarrow \mu \mu \gamma$		
Cut	Events	Cut	Events	
Triggers		Triggers		
GRL		GRL		
$ d_0 < 1mm, Z_0 < 10mm$		$ d_0 < 1mm, Z_0 < 10mm$		
$ \eta(e) < 2.47$	6510969	$ \eta(\mu) < 2.37$	5936302	
$ \eta(\gamma) < 2.37$		$ \eta(\gamma) < 2.37$		
excluding		excluding		
$1.37 < \eta(\gamma) < 1.52$		$1.37 < \eta(\gamma) < 1.52$		
recoclass=1	5888750	recoclass=2	5834814	
G_quality>2	1101215	G_quality>2	1104018	
$P_t(\gamma) > 15 \ GeV$	149737	$P_t(\gamma) > 15 \ GeV$	145167	
$\delta \mathrm{R}(\gamma,l) > 0.4$	123488	$\delta \mathrm{R}(\gamma, l) > 0.4$	95435	
$\min(\mathbf{P}_{t_1}, P_{t_2}) > 10 \ GeV$	73252	$\min(P_{t_1}, P_{t_2}) > 10 \ GeV$	73049	
$\max(\mathbf{P}_{t_1}, P_{t_2}) > 25 \ GeV$	68779	$\max(P_{t_1}, P_{t_2}) > 25 \ GeV$	66240	
topoEtcone40(γ) < 4 GeV	58092	topoEtcone40(γ) < 4 GeV	61226	
topoEtcone40(e)/ $E_t < 0.3$	50919	topoEtcone40(μ)/ $E_t < 0.2$	56677	
$80~GeV < M(ee\gamma) < 100~GeV$	30843	$45 \ GeV < M(\mu\mu) < 80 \ GeV$	34084	
$45 \ GeV < M(ee) < 80 \ GeV$	27331	$80~GeV < M(\mu\mu\gamma) < 100~GeV$	30687	




Only $Z \rightarrow 2l\gamma$ red regions of these plots were taken for the analysis.

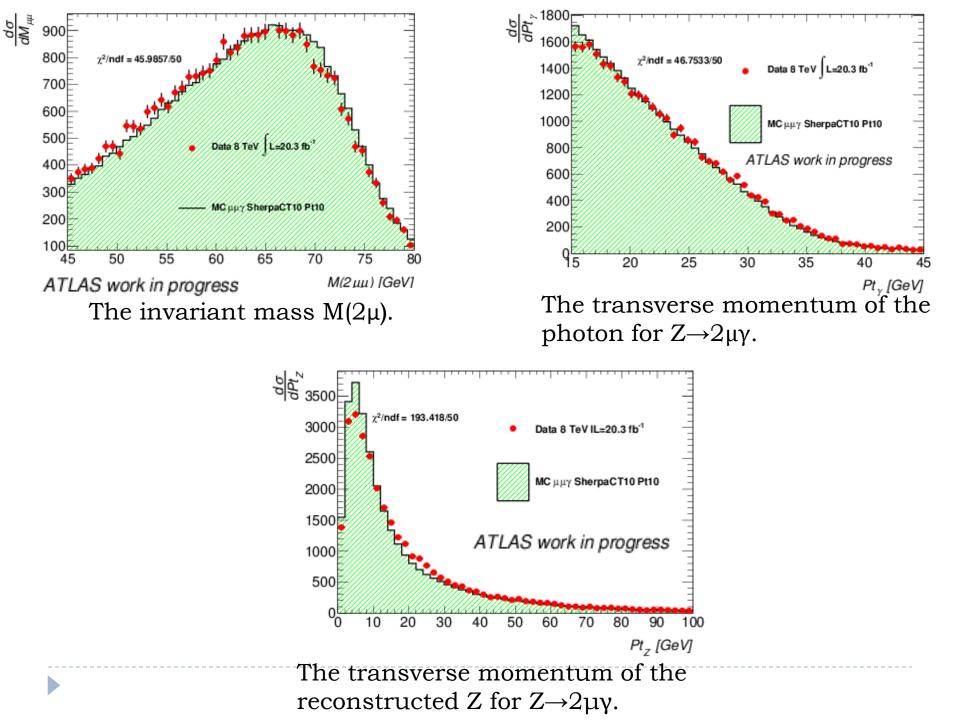

Analysis

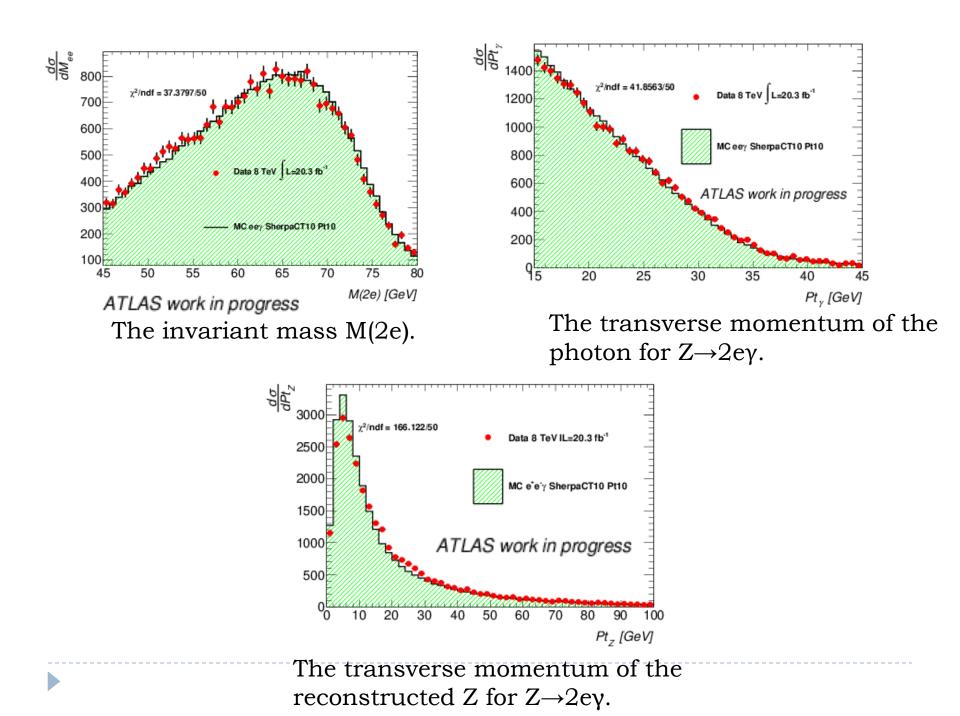
Conclusion


- I. I have applied the selection criteria described in the note (ATL-COM-PHYS-839) to the 2012 data collected with ATLAS detector at 8 TeV pp collisions. The selection criteria were also applied to the SM MC of the pp→Z+X→2ly+X process (mc12_8TeV_ZeegPt10, mc12_8TeV_ZmumugPt10).
- > 2. I have checked the cut flow tables.
- 3. I have validated all pictures from the note. I have applied ATLAS Style to all the pictures. I have automated the procedure.
- 4. I have varied the selection criteria to study the systematical uncertainty.

My pictures were shown at SM Electroweak group meeting (22 Jul 2016). Also these pictures will be included in the note update.

What I have learned from the experience:


- A) How to analyze the data and select the events;
- B) How to compare the MC with the data;
- C) How to suppress the background;
- D) I have learned how Z-boson is born at pp collisions and how it decays. The radiative corrections are small but could reveal some physics;
- E) The ROOT skills were improved;


APPENDIX

vs positive electron and photon invariant mass

The $\sqrt{(Qp^2+Qm^2)}$ quantity.

