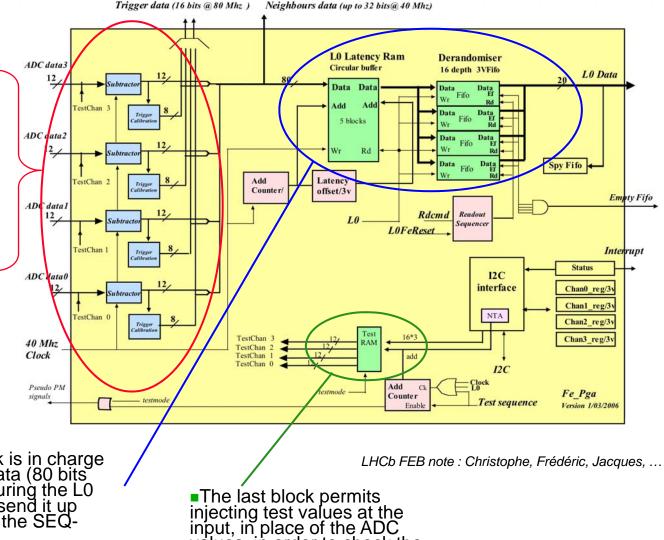


Olivier Duarte

April 8-9th 2009

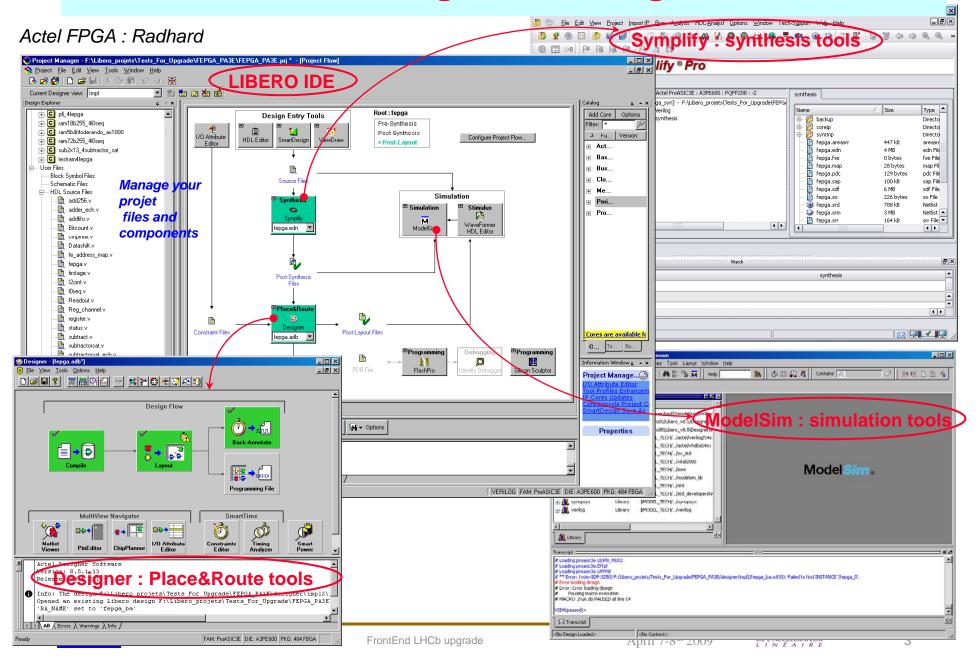

Choice of Front-End FPGA

- ECAL/HCAL Front-END Card : FEPGA functionalities reminder
- Integrated Design Environment :
 - IDE Actel Libero
 - Debug tools : Identify, Silicon explorer (Actel antifuse only !)
- Axcelerator family (current Front end FPGA)
 - Device architecture reminder
 - Layout : Front-end FPGA firmware inside AX250
- PA3 family
 - Device architecture
 - Example of Front-end FPGA firmware inside A3PE600
 - Estimation of needed resource in PA3 family
 - Possible target
 - Compilation inside possible target
 - Possibilities of migration inside PA3 family
- Summary table (price, resources, ..)

FrontEnd PGA functionalities: reminder

4 functional blocks:

- The first one processes the input ADC data, which needs to be re-synchronized (each ADC has its own clock), and processed to remove the low frequency noise and to subtract the pedestal
- The second block produces the trigger data, converting the 12 bits of the ADC to 8 bits


The third block is in charge of storing the data (80 bits per FE-PGA) during the L0 latency, and to send it up upon LO-Yes to the SEO-P'GA

values, in order to check the proper behaviour of the card.

Actel Libero: Integrated Design Environment

Debug tools: Silicon Explorer - Identify

Silicon Explorer:

Integrated verification and logic analysis tool for antifuse devices ONLY

Silicon Explorer shortens the FPGA design verification process by providing a tightly integrated suite of tools and capabilities that enable rapid isolation of functional and timing problems

There's no need to relayout, recompile, or redo any part of your design to complete the verification process.

Christophe, Frédéric and Jacques are expert!

Identify implementation:

- Need to recompile and relayout a part of your design (incremental option)
- Use logic and RAM block of the device
- Read data spyed by JTAG

Identify: (free)

In-system debugging tool for Actel's flash devices

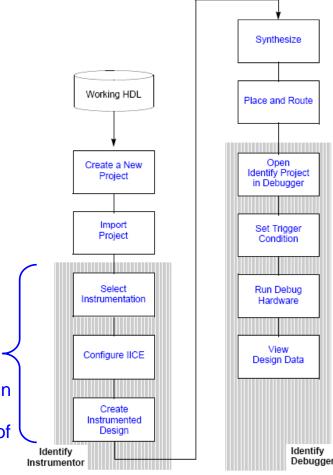
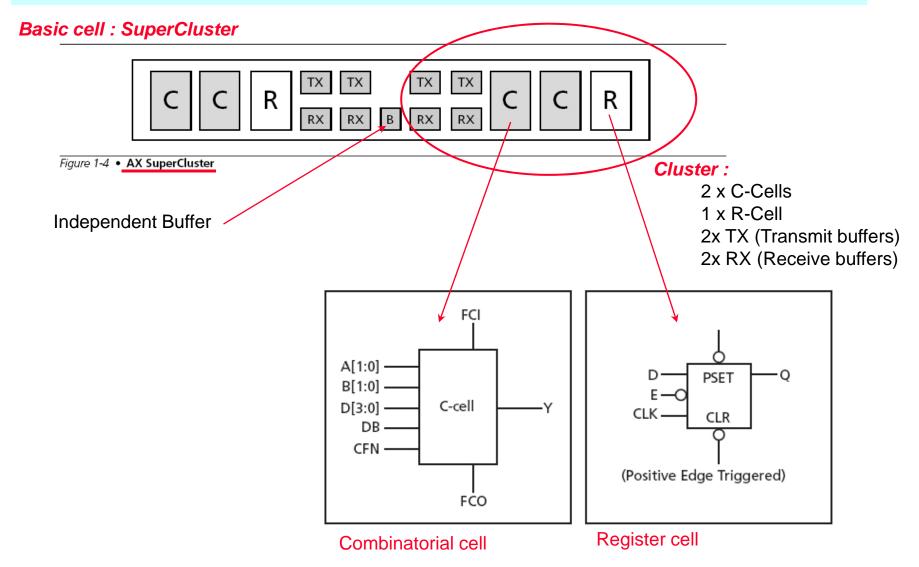



Figure 1: Identify RTL Debugger Design Flow

LABORATOIRE DE L'ACCÉLÉRATEUR

Axcelerator Family device architecture (antifuse technology)

Axcelerator Family device architecture (antifuse technology)

Axcelerator Family FPGAs

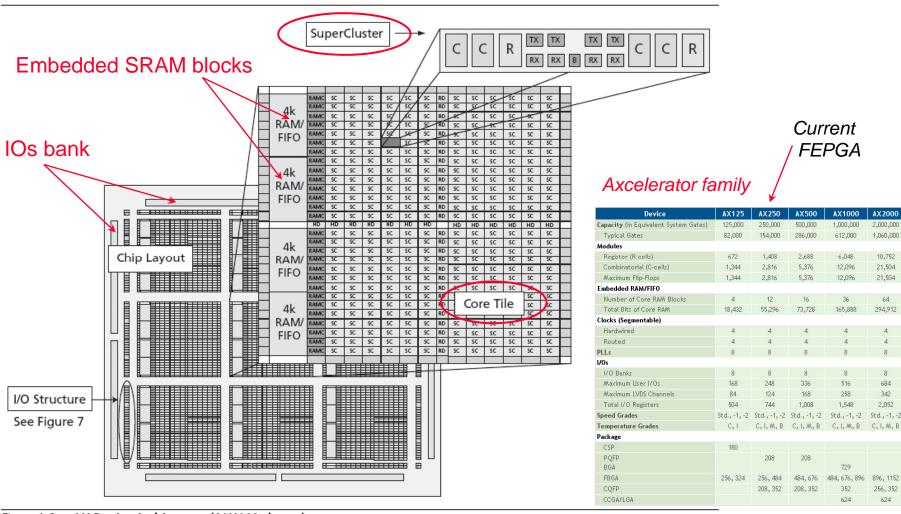
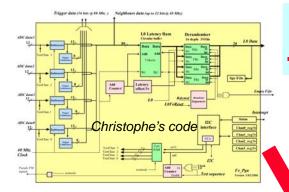



Figure 1-6 • AX Device Architecture (AX1000 shown)

LABORATOIRE DE L'ACCÉLÉRATEUR LINÉAIR E

IOs Banks

FEPGA firmware inside AX250

RAMBlock

1 SuperCluster

Compile report:

Family: Axcelerator Device: AX250 Package: 484 FBGA

Post-Combiner device utilization:

• SEQUENTIAL (R-cells)

Used: 1249 Total: 1408 (88.71%)

COMB (C-cells)

Used: 2181 Total: 2816 (77.45%)

LOGIC (R+C cells)

Used: 3430 Total: 4224 **(81.20%)** RAM/FIFO Used: 12 Total: 12 IO w/Clocks Used: 148 Total: 248

CLOCK (Routed) Used: 3 Total: 4

PLL Used: 2 Total: 8

Input I/O Register: 0
Output I/O Register: 0

DDR Register : 0Comb-Comb (CC) : 0

Carry Chain : 65

I/O Information:

Input Pads : 63
Output Pads : 84
Bidirectional Pads : 1
Differential Input Pairs : 0
Differential Output Pairs : 0

ProASIC3 Family device architecture (Flash technology)

Figure 1-2 • VersaTile Configurations

ProASIC3 Family architecture (Flash technology)

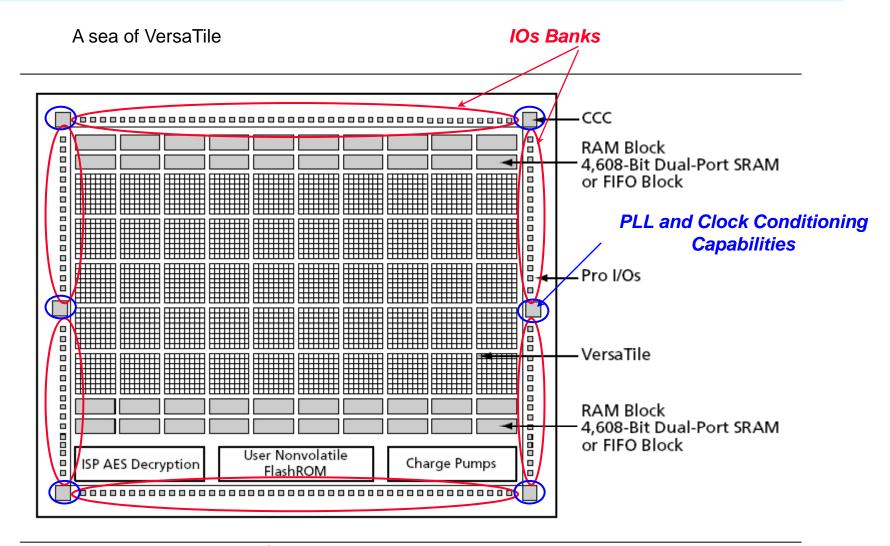
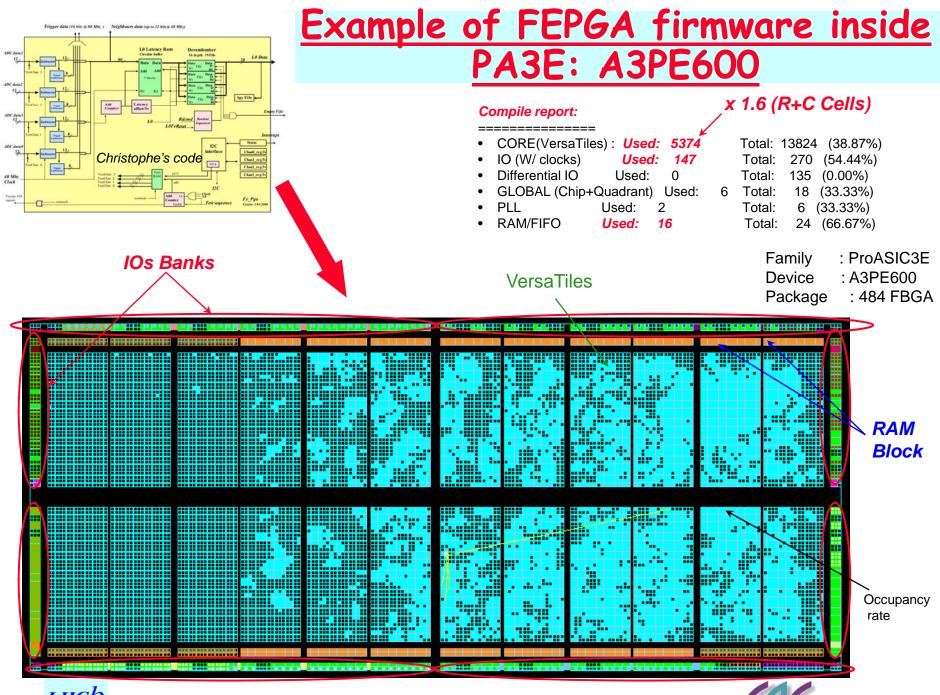
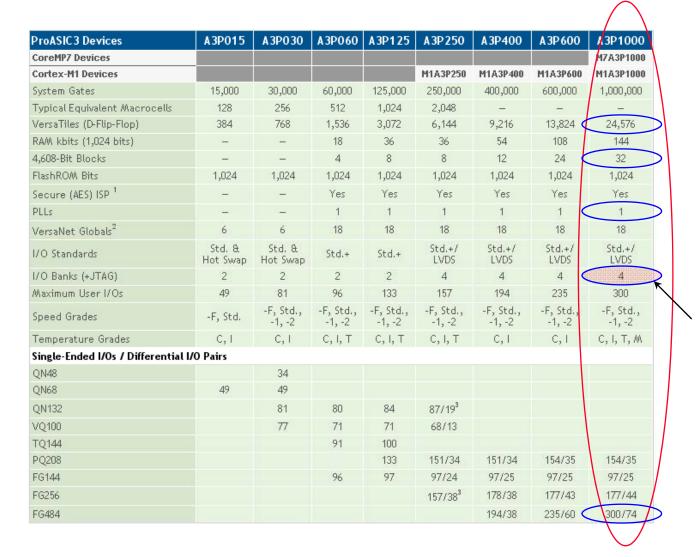



Figure 1-1 • ProASIC3E Device Architecture Overview

Estimation of needed resources in ProASIC3 family

	Curent FEPGA 4 Channels (AX250)	Futur FEPGA 8 Channels (PA3 Family ?)	Futur FEPGA 8 Channels (AX 500) (BackUp solution !)
IOs	148	~ 260 (Jacques calculation !)	317 (FG 484) 336 (FG 676)
IOs Banks	8	8 4 is too few considering IOs diversity (GBT, ADC,)	8
RAM Blocks	12 (L0 Latency Derandomiser)	~ <mark>26</mark> Packing (~24) Test RAM (~2)	16
Cells	3430 (R+C Cells) (~ 5374 Versatiles)	~ 11000 Versatiles	8064 (R+C Cells)
PLL	8 (used: 2)	1?	8


IOs: 96 ADC + 32 Trigger + 48 neighbour + (58 ou 28) GBT + 21 Divers = 253 ou 225

Packing: 96 bits during N samples if N=1024 => 24 Blocks RAM

Possible target in A3P family

1.5 V core operation

A3P1000

Pb number of bank!

4 is too few considering IOs diversity (GBT, ADC, ...)

12

Possible target in A3PE family

ProASIC3E Devices	A3PE600	A3PE1500	A3PE3000
Cortex-M1 Devices		M1A3PE1500	M1A3PE3000
System Gates	600,000	1,500,000	3,000,000
VersaTiles (D-Flip-Flop)	13,824	38,400	75,264
RAM kbits (1,024 bits)	108	270	504
4,608-Bit Blocks	24	60	112
FlashROM Bits	1,024	1,024	1,024
Secure (AES) ISP	Yes	Yes	Yes
Integrated PLL in CCCs ¹	6	6	6
VersaNet Globals ²	18	18	18
I/O Standards	Pro	Pro	Pro
I/O Banks (+JTAG)	8	8	8
Maximum User I/Os	270	444	620
Speed Grades	-F, Std., -1, -2	-F, Std., -1, -2	-F, Std., -1, -2
Temperature Grades	C, I	C, I	C, I
Single-Ended I/O / Differential I/O Pairs			
PQ208	147/65	147/65	147/65
FG256	165/79		
FG324			221/110
FG484	270/135	280/139	341/168
FG676		444/222	
FG896			620/310
		7	

- •1.5 V core operation
- Bigger than A3P

A3PE3000

- Oversize
- Pb of price!

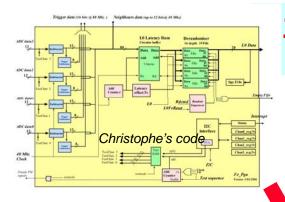
A3PE1500

Good candidat!

Possible target in A3PL family

					$\overline{}$
ProASIC3L Devices	A3P250L	A3P600L	A3P1000L	A3PE600L	A 3P E 300 QL
Cortex-M1 Devices		M1A3P600L	M/A3P1000L		M1A3PE3000L
System Gates	250,000	600,000	1,000,000	600,000	3,000,000
VersaTiles (D-Flip-Flop)	6,144	13,824	24,576	13,824	75,264
RAM kbits (1,024 bits)	36	108	144	108	504
4,608-Bit Blocks	8	24	32	24	112
FlashROM Bits	1,024	1,024	1,024	1,024	1,024
Secure (AES) ISP ¹	Yes	Yes	Yes	Yes	Yes
Integrated PLLs in CCCs ²	1	1	$\bigcirc 1$	6	6
VersaNet Globals	18	18	18	18	18
I/O Standards	Std.+/LVDS	Std.+/LVDS	Std.+/LVDS	Pro	Pro
I/O Banks (+JTAG)	4	4	\bigcirc 4	8	8
Maximum User I/Os	157	235	300	270	620
Typical Static / Flash*Freeze Power (mW) at Vcc=1.2 V	0.33	0.66	1.06	TBA	3.30
Speed Grades	Std., -1	Std., -1	Std., -1	Std., -1	Std., -1
Temperature Grades	C, I	С, Г	С, І	M	C, I, M
Single-Ended I/Os / Differential I/O Pairs					
VQ100	68/13				
PQ208	151/34	154/35	154/35		147/65 ²
FG144	97/24	97/25	97/25		
FG256	157/38	177/43	177/44		\
FG324					221/110
FG484		235/60	300/74	270/135	341/168
FG896					620/310

Low power 1.2 to 1.5 V core operation


4 is too few considering IOs diversity (GBT, ADC, ...)

A3P1000 Pb number of bank! A3PE3000

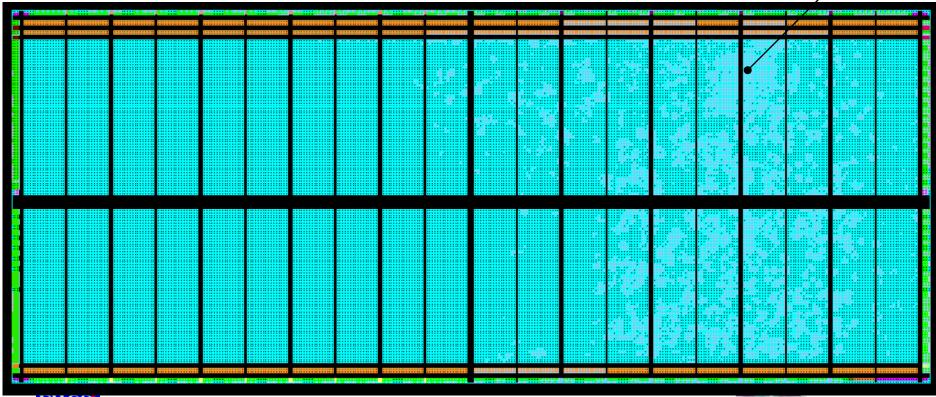
- Oversize
- Pb of price!

Compilation inside possible target: A3PE1500

Compile report:

Family : ProASIC3E Device : A3PE1500

Package: 484


FBGA

Differential IO Used: 0 Total: 139 (0.00%)
GLOBAL (Chip+Quadrant) Used: 6 Total: 18 (33.33%)

Low Static ICC Used: 0 Total: 1 (0.00%)
FlashROM Used: 0 Total: 1 (0.00%)

User JTAG Used: 0 Total: 1 (0.00%)

Occupancy rate

LHCb

Olivier Duarte FrontEnd LHCb upgrade April 7-8th 2009 PELACETERATEUR 15

Possibilities of migration inside A3P Family

						\triangle	\triangle	$\overline{}$
ProASIC3 Devices	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
CoreMP7 Devices								M7A3P1000
Cortex-M1 Devices					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
System Gates	15,000	30,000	60,000	125,000	250,000	400,000	600,000	1,000,000
Typical Equivalent Macrocells	128	256	512	1,024	2,048	-	-	-
VersaTiles (D-Flip-Flop)	384	768	1,536	3,072	6,144	9,216	13,824	24,576
RAM kbits (1,024 bits)	7-1	_	18	36	36	54	108	144
4,608-Bit Blocks	7-7	-	4	8	8	12	24	32
FlashROM Bits	1,024	1,024	1,024	1,024	1,024	1,024	1,024	1,024
Secure (AES) ISP 1	-	-	Yes	Yes	Yes	Yes	Yes	Yes
PLLs	_	_	1	1	1	1	1	1
VersaNet Globals ²	6	6	18	18	18	18	18	18
I/O Standards	Std. & Hot Swap	Std. & Hot Swap	Std.+	Std.+	Std.+/ LVDS	Std.+/ LVDS	Std.+/ LVDS	Std.+/ LVDS
I/O Banks (+JTAG)	2	2	2	2	4	4	4	4
Maximum User I/Os	49	81	96	133	157	194	235	300
Speed Grades	-F, Std.	-F, Std., -1, -2						
Temperature Grades	С, І	С, І	C, I, T	C, I, T	C, I, T	С, І	С, І	C, I, T, M
Single-Ended I/Os / Differential I/	O Pairs							
QN48		34						
QN68	49	49						
QN132		81	80	84	87/19 ³			
VQ100		77	71	71	68/13			
TQ144			91	100				
PQ208				133	151/34	151/34	154/35	154/35
FG144			96	97	97/24	97/25	97/25	97/25
FG256					157/38 ³	78/38	177/43	177/44
FG484						194/38	235/ <i>6</i> 0	300/74

Migration possible inside the same family:

•From higher to middle density device

Migration possibility between family:

- A3P1000 <-> A3P1000L except pin Flash freeze.
- A3P3000 <-> A3P3000L except pin Flash freeze.

Summary

		Package Pins	IOs Max	IO Bank	VersaTitles or R_Cells C_Cells	BlockRAM (4608 bits Blocks)	PLL	VersaTitles or R_Cells C_Cells used	Resource used with FEPGA fimware	Prices (PU for 1000)	
rator	AX250	484 FBGA	248	8	R_Cell: 1408 C_Cell: 2816	12	8	R_Cell: 1249 C_Cell: 2181	R_Cells : 89% C_Cells : 78% - 148 / 248 IOs	PUHT € 42.55	
Axcelerator	AX500	484 FBGA (FG676)	317	8		16	8	R_Cell: 1249 (x2) C_Cell: 2181 (x2)		PUHT € 69.8\$	Curent FEPGA
X	A3P1000	484 FBGA	300	4	24576	32	1	5390 (x2)	- 22% VersaTitles - 147 / 300 IOs	PUHT € 36.90	4 Channels
A3P Family	A3PE600	484 FBGA	270	8	13824	24	6	5374 (x2)	- 40% VersaTitles - 147 / 270 IOs	PUHT € 39.40	
	A3PE1500	484 FBGA (FG676)	280	8	38400	60	6	5374 (x2)	- 14% VersaTitles - 147 / 270 IOs	PUHT € 92.10 PUHT € 93.70	}*
	A3PE3000	484 FBGA (FG896)	341 620	8	75264	112	6	5374 (×2)	- 7% VersaTitles - 147 / 341 IOs	PUHT € 198.10 PUHT € 213.30	
	A3P1000L	484 FBGA	300	4	24576	32	1	5345 (x2)	- 22% VersaTitles - 147 / 300 IOs	PUHT € 49.40	
	A3PE3000L	484 FBGA (FG896)	341 620	8	75264	112	6	5345 (x2)	- 7% VersaTitles - 147 / 341 IOs	PUHT € 222.30	*
		(1 0000)	1 020								

*** LIBERO PLATINUM** X 1 PUHT €2495

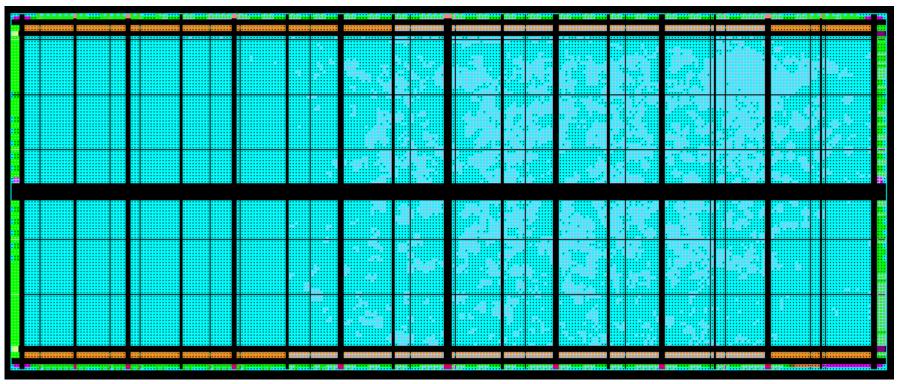
For 8 Channels

LABORATOIRE DE L'ACCÉLÉRATEUR LINE A JERE

Spares

FEPGA firmware inside PA3: A3P1000

Compile report:



CORE Used: 5392 Total: 24576 (21.94%) IO (W/ clocks) Used: 147 Total: 300 (49.00%)

0 Total: 74 (0.00%) Differential IO Used:

GLOBAL (Chip+Quadrant) Used: 6 Total: 18 (33.33%)

PLL Used: 1 Total: 1 (100.00%) RAM/FIFO Used: 16 Total: 32 (50.00%) Low Static ICC Used: 0 Total: 1 (0.00%) FlashROM 0 Total: Used: 1 (0.00%) User JTAG Used: 0 Total: 1 (0.00%)

: ProASIC3

: A3P1000

Package: 484 FBGA

Family

Device

Trigger date (11 kin g to Mic) Nighbann date (sp to 12 king at Mic) ADC data 13 ADC data 14 ADC data 15 ADC data 15 ADC data 16 ADC data 16 ADC data 17 ADD data 18 ADC data 18 AD

FEPGA firmware inside PA3E: A3PE3000

Compile report:

: ProASIC3E

: A3PE3000

Package: 484 FBGA

CORE IO (W/ clocks)

Used: 5374 Total: 75264 (7.14%)

Used: 147 Total: 341 (43.11%)

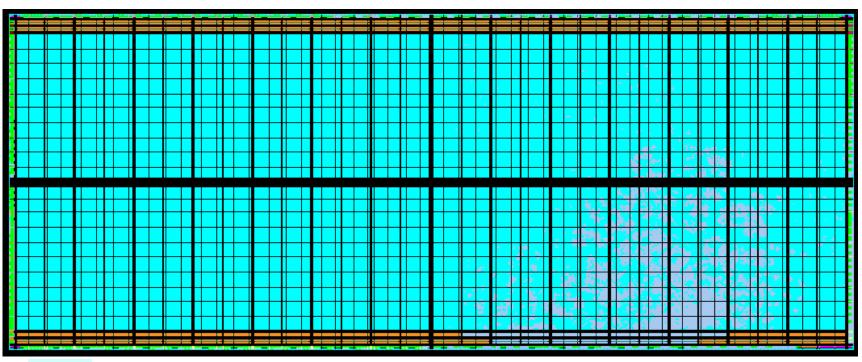
Differential IO Used: 0 Total: 168 (0.00%)

GLOBAL (Chip+Quadrant) Used: 6 Total: 18 (33.33%)

 PLL
 Used:
 2 Total:
 6 (33.33%)

 RAM/FIFO
 Used:
 16 Total:
 112 (14.29%)

 Low Static ICC
 Used:
 0 Total:
 1 (0.00%)


 FlashROM
 Used:
 0 Total:
 1 (0.00%)

 User JTAG
 Used:
 0 Total:
 1 (0.00%)

LIBERO PLATINUM X 1 PUHT € 2495

Family

Device

Trigger date (18 bin to 18 Mir.) Neighborn date (sp. 12 bin to 18 Mir.) ADC date 12 13 14 15 16 fairney Ram 16 fairney Ram 16 fairney Ram 17 fairney Ram 18 fairney

FEPGA firmware inside PA3E: A3P1000L

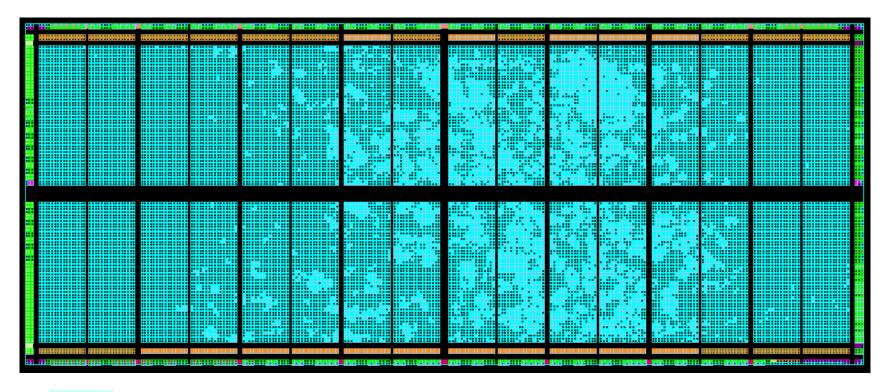
Compile report:

Family : ProASIC3L Device : A3P1000L

Package: 484 FBGA

CORE Used: 5345 Total: 24576 (21.75%)
IO (W/ clocks) Used: 147 Total: 300 (49.00%)
Differential IO Used: 0 Total: 74 (0.00%)

GLOBAL (Chip+Quadrant) Used: 6 Total: 18 (33.33%)


 PLL
 Used:
 1 Total:
 1 (100.00%)

 RAM/FIFO
 Used:
 16 Total:
 32 (50.00%)

 Low Static ICC
 Used:
 0 Total:
 1 (0.00%)

 FlashROM
 Used:
 0 Total:
 1 (0.00%)

 User JTAG
 Used:
 0 Total:
 1 (0.00%)

21

Trigger date (18 ton to 18 Mr.) Neighbourn date top to (2 tons or Mr.) 15 Latency San Control 12 15 Latency San Control 13 15 Latency San Control 13 15 Latency San Control 14 15 Latency San Control 15 16 Latency San Control 15 17 Latency San Control 15 18 Latency San Control 15 18

FEPGA firmware inside PA3E: A3PE3000L

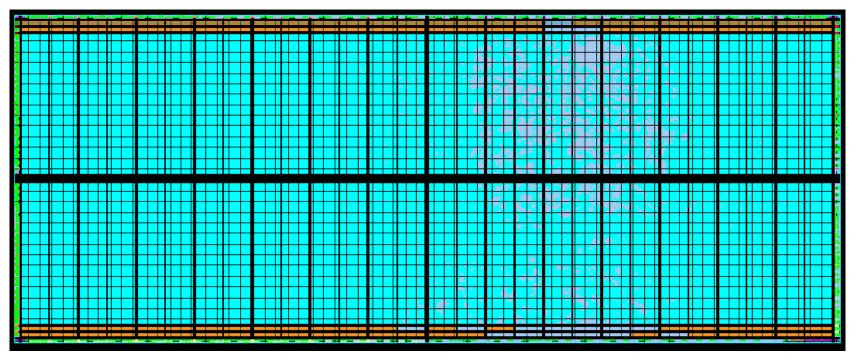
Family : ProASIC3L Device : A3PE3000L Package : 484 FBGA

Compile report:

CORE Used: 5345 Total: 75264 (7.10%)
IO (W/ clocks) Used: 147 Total: 341 (43.11%)
Differential IO Used: 0 Total: 168 (0.00%)

GLOBAL (Chip+Quadrant) Used: 6 Total: 18 (33.33%)

 PLL
 Used:
 1 Total:
 6 (16.67%)


 RAM/FIFO
 Used:
 16 Total:
 112 (14.29%)

 Low Static ICC
 Used:
 0 Total:
 1 (0.00%)

 FlashROM
 Used:
 0 Total:
 1 (0.00%)

 User JTAG
 Used:
 0 Total:
 1 (0.00%)

LIBERO PLATINUM X 1 PUHT € 2495

