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Cross-section pictures of the gold-plated GEMs




Why simulations on conical GEMs?

» large area GEMs
l

single mask lithographic process is used for the production, leading to conical GEMs

» what are the properties of the GEM detectors obtained with single mask
lithographic technique?
» how do these properties depend on the geometry?
|
v’ spatial uniformity
v’ time stability
v electron transparency
v' discharge probability
v maximum achievable gain
|
v field shape
v electron transparency
v’ avalanche shape
v’ charging up properties



Simulations: basics

Simulation

» ANSYS PACKAGE

Ansys is used to define:

1) the geometry;
2) the material properties;
3) the electrodes voltage;
4) the e.m. boundary

conditions;
and to solve the e.m. equations
with a finite elements
analysis method

=)

» GARFIELD PACKAGE

Garfield is used to:

1) read the Ansys fieldmaps;
2) define the gas properties;
3) simulate the behavior of

electrons in the gas




ANSYS (1): definition of the geometric
and electrostatic properties

Geometric properties:

» kapton thickness = 50 um

» copper thickness = 5 uym

» drift gap thickness = 770 uym
» induction gap thickness = 770 uym
» holes pitch = 140 ym
» hole smaller diameter = 55 ym
» hole larger diameter = 55 ym - 95 ym

Electrostatic properties:
» drift field = 3 kV/cm
» GEM voltage =400 V
» induction field = 3 kV/cm

v" in order to speed up the simulation, only the elementary cell has been considered,

as shown in the scheme :



ANSYS (2): meshing options and field solution

» ANSYS automatic mesher set to
produce an high precision mesh

!

v’ good cell description

» further low—level manual mesh
refinement in all the volume
!
v' good and homogeneous mesh with
reasonable field map size
(= 20K tetrahedra, 3MB)




GARFIELD (1) field strength on the hole axis
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GARFIELD (2): electrons drift lines on the hole section

3 Electron drift lines from a track 3 Electron drift lines from a track
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GARFIELD (3): transparency microscopic study

7/2 pitch

5/2 \B pitch

1) random Xx<[0;pitch/2]
2) random y,..<[0;\3 pitch/2]
3) Zgar=100 pm
4) Eg,4=0.1eV
5) random direction of P4

» the electron is traced using a
microscopic technique which step is
the free path
» at each step a collision is simulated
» the result of the drift is recorded,
together with X4, Yeng @Nd Z.q
S possible scenarios:
v hit top electrode
v hit kapton
v hit bottom electrode
v hit anode
v attached to a gas molecule



GARFIELD (4): transparency study results
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Conclusions and outlooks

» the overall electron transparency is about 20% and it depends only slightly on the
hole geometry

» the percentage of electrons ending up on each electrode and on the kapton layer
varies from one geometry to another — different detector behavior

v the statistics is quite poor (1000 electrons for each geometry) — higher statistics
will help to improve precision

v’ the diffusion was accurately modeled, but no avalanche was simulated

v’ the kapton charging up is not taken into account — need to implement the charging
up in order to compare the results with experimental data
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