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Discharge physics in MPGDs was already
reviewed during Paris Workshop and
WG2 meeting in December

The main focus in these presentations which
were made by P. Fonte and myself was on a
Raether limit and a high rate effect to which in
some cases the Raether limit can be also
applied



Raether limit for MPGDs:

It was recently discovered” that in micropattern
detectors: GEMs, MICROMEGAS and others
breakdowns appear at the following conditions:

A 0xNo=Q=109-107 electrons,

where n, is the number of primary electrons
created in the drift region of the detector

(Q,,,.x depends on the detector geometry and the gas composition)

(#»see Y. Ivanchenkov et al., NIM A422,1999,300 and
V. Peskov et al., IEEE Nucl. Sci. 48, 2001, 1070)



Therefore:

With single primary electrons gains up to
10°-107 in principle are possible
With >>Fe (n,~230 electrons) the maximum
achievable gain is <10°
With alphas (n,=10°) the maximum
achievable gain <100



Feedbacks related breakdowns can be in the
case of MPGDs operating in noble gases or
combined with photocathodes)

Ay=1(Ayy.=1 or Ayyp,=1)-"slow”
mechanism of discharges

The probabilities vy, and vy, are increasing with the increasing the
photocathode QE and it's sensitivity to visible light and
with electric field near the cathode



Parallel plate detector (PPAC)
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Signal amplitude does not drop with rate, however there is a rate limit for each amplitude




Rate limit of micropattern gaseous detectors
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For each micropattern detector the amplitude remains unchanged with rate,
however the maximum achievable gain drops with rate



Breakdown statistics via superimposition and Raether

limit
Superimposition cell
For instance:
R A=1cm?
Beam: R counts/(mm? s) E a=1mm?2
A 1= 1 ps (ions)
‘ _ > P(spark in a cell)=p
Time=1s A= average #

There are N=A/ax(1s)/7 superimposition cells: N=108. avalanches/cell

We want to observe a relatively low absolute spark rate P(spark)=S~102 /s
S=1-P(not spark)=1-(1-p)N = p~S/N: p=10-1°.

The number of avalanches n in each cell is Poisson-distributed with average A=Rar:
A=R x1 x10-.

There will be a spark if ng>Qg, g=is the average avalanche charge and Qg the
Raether limit.

Then, the required gain reduction owing to superimposition is 1/, with i the percentile
1-p of the Poisson distribution with average A.



Rate-induced breakdown? — experimental
evidence
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Fig. 1. The maximum achievable gain (curves 1-6), as a function
of X-ray flux for various detectors: (1) thick-wire MWPC, (2)
PPAC with 3mm gap. (3) PPAC with 0.6 mm gap. (4) MI-
CROMEGAS (from Ref. [13]) (5) CAT, (6) GEM. (7-9) Space-
charge gain limit as a function of rate for other MWPCs: (7)
“standard™ MW PC, (8§) MW PC replotted (from Ref. [14]). (9)
thin-gap MWPC (from Ref. [15]).
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Mere statistics seem to qualitatively
reproduce the data!

BUT...



Puzzle...?
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Fig. 3. The maximum achievable gain as function of rate(6keV
N-rays) for the 3mm-gap PPAC(1.2), and for MICROMEGAS
{3) (rom Ref. [6]). Curve (1) corresponds to a beam diameter of
2mm and curve (2), to a beam diameter of 20mm. The gas
mixture was Ar + 3% isobutanc at 1 atm



Beside these “classical” mechanisms there were

7 13

mentioned exotic mechanisms: “preparation”, “cathode
excitation/memory” effect and electron jets

In this reports I'd like to focus on these
exotic breakdown mechanism and
demonstrate that they exist in MPGDs



Preparation mechanism



Breakdown |. lIvanchenkov et al, IEEE, 45,1998, 258
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Usual explanation is via a Malter effect..
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But it is not so simple...




Classical Malter effect predicts single electron emission
(see L. Malter , Phys. Rev, 49,1936, 478)

However, in most cases a slow current increase is just an
integral of high amplitude pulses 1. vanchenkov et al, IEEE, 45,1998, 258

“preparation” pulses, _
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This strongly contradict to classical Ma;ter effect



More detailed studies reveal that the
preparation mechanism may exhibit
not only as current pulses but also as
a short-term current growth



Cathode excitation
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Early studies of the cathode excitation effect

Fig. 8. Skctch of a multusection gas counter for vy, measure-
ments, | - Cylindrical anode; 2 - muliisectional cylindrical
cathode; 3 — glow-discharge; 4 - cathode spot of the glow-dis-
charge; 5 — external VUV radistion source; & - collimating

system for the YUY radiation.

G.F. Karabadjak et al., NIM 217, 1983, 56
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Measurements with single wire counters:

Window
— Anode It is well known that

i :I s In single wire couters:
- — Ay=1
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V. Peskov, PhD Thesis , 1976



Breakdown voltage

This curve is typical for many gaseous
detectors, including MPGDs (check with your
experience!)



Changes in QE after intense ion bombardment
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P. Fonte , V. Peskov, paper in preparation



So it was clearly observed that after intense ion
bombardment the QE temporally increase as
well as yph and y+

Therefore , the feedback loop Ay=1 will appear at lower A



Jets



What is the origin of these gigantic
pulses?
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Explosive field emission

Besides classical field emission calculated by Zommerfeld and others
there is another phenomena -explosive field emission

Anode

e\

Cathode

Fig. 14, Cumrent—voltags curve in the case of electrical breakdown i vacuum
{from [17]). Enlargement shows pulses due to the explosive field emission.

R. Latham, “High voltage vacuum insulation”, new Yoork,1995



Explosive electron emission was also observed
from cold cathodes of some gaseous

discharges, for example arcs (Rachovski
phenomena)

Optical system

™

Anode ARC 4 Cold
cathode

(eo0°09)  mwpc

See: G.A. Lubimov, V.l. Rahovski, Uspekh. Phys. Nauk, 125, 1978,
665,

V. Peskov Journ, de Physique Coll. C7, suppl#7, 1979,C7-333



A proposed mode of electrons jets in gaseous

detectors:

a) Dislectic inclusion Fositive icns
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Figurs 3; Schematic illostration of a two-slep process which leads io
emission of jets and bursts from thin dielectric films.

P. Fonte et al.,
IEEE Nuc. Sci
46,1999,321



Figure 3 - Gap current as a function of time in the vicinity of a
rate-induced spark at low gas gain. A linear increase in current is
visible for about one second before breakdown, followed by several
large pulses that coincide with a spark,
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Some of the results presented in this paper were interpreted
via the jets mechanism




Role of adsorbed layers?
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Observations of jets and cathode
excitation effect in operation of some
gaseous detectors

Examples:
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Fig 5. The efficiercy and the rate ofnoise pulses versns the voltage applisd on
the RPC [4]. The curve with the trianzle symbaols commsspond to measurzments
done in anti-coincidence with the slgnals from the scintilators, respectively. Gas
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IEEE Trans Nucl. Sci, 49, 2002, 1622



High rate Si and GaAs RPCs
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GEM at extreme counting rates
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Fig. 12, The current from the GEM (at 350 V) recorded directly on a 30-!
mput of the oscilloscope when the GEM was exposed fo a pulsed gamma
tadiation, producing ~ 107 counts/mm® on the 2.5 em « 2.5 em GEM area. No
other resistors (except the 50-!! mput of the scope) were connected. The upper
figure shows the current pulse from a racetrack cument monitor. The lower
[Ezune shows Qe conesponding cunent pulse Qow e GEM 1=adout. The gas
mixtire Ar+ 20%C0; was used for the measurement (1 atm).
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Fig. 13. The same setup as m Fig. 12, but 420 V apphed over the GEM
electrodes. The upper oscillegram shows the current pulse fom the racemack
eurrent monitor, the lower shows the current fiom the GEM readout. One can
clearly se= current pulses of large amplitudes, corresponding to a large number
of primary electrors = 107,

C. lacobaeus et al., IEEE Trans Nucl. Sci, 49, 2002, 1622



Delayed discharge
propagation between GEMs
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See: V. Peskov. “Discharge propagation between GEMSs,” this WG-2 meeting



Conclusions

*Besides well established breakdown mechanisms- streamer
and feedback related -it was discovered recently another one:
“memeory/cathode excitation-jets”

 This mechanism mainly show up at high counting rates. For
example COMPASS RICH already experiance in memory
effect and some tests of RPCs at GIF also revei this effect

* Very often cathode excitation and jets mechanism are mixed

e It will be important to further study these effects , becouse
they can cause problems at future MPGDs applications in LHC
experimenst.
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