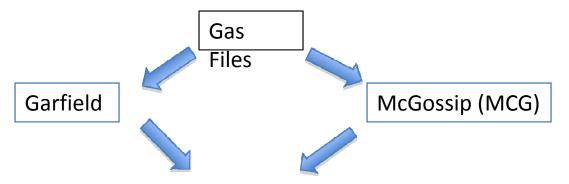

Simulation of GOSSIP/GridPix Nominal Detector, and GOSSIP in ATLAS

GOSSIP BASICS:

(In case you aren't already familiar with it...)

Gas On Slimmed Silicon Pixels



Simulating hits: 4 Steps

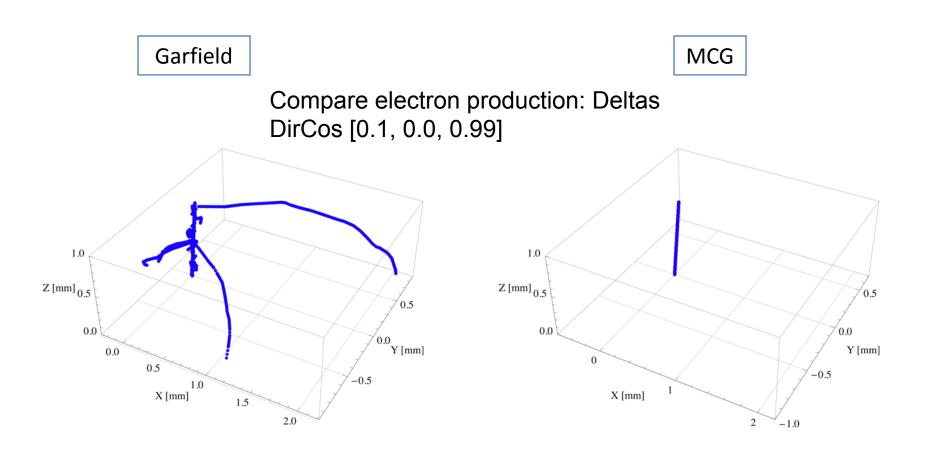
1. Use MagBoltz and Heed (From Garfield) to generate electron liberation stats and transport properties for a specific gas [mixture].

Simulating hits:

1. Use MagBoltz and Heed (From Garfield) to generate electron liberation stats and transport properties for a specific gas [mixture].

Generate tracks and drift the electrons.

Simulating hits: 2 Generate Tracks


Garfield

MCG

- •Very mature.
- Very Realistic.
- •Includes streamers (delta rays).
- •Includes 'Zero diffusion'.

- •Very Fast, but:
- •Only uses Heed / MagBoltz stats to approximate Garfield (Heed) process.
- •No streamers.
- •All electrons are created exactly along the track.

Simulating hits:

1000 Tracks

Simulating hits:

What about zero diffusion?

Garfield

MCG

•Typically < 200 nm

Simulating hits: 3 Drift.

Step 3: Drift electrons to grid.

Garfield

MCG

- Compute, microscopically, interactions for drifting electrons to get drift time. (SLOW, but very realistic).
- · Can also do it stochastically.

- Compute drift time using transport properties from MagBoltz.
 vDrift: [Vx, Vy, Vz]
 Diffusion µm/√cm [σx σy σz]
- Very fast.

Simulating hits: 4 Read out.

Step 4: Calculate gain and run shaper.

- MCG or MATLAB script: Iterate over all electrons in a track (event).
 - 1. Does electron make it through the grid?: $P\sim(1-E_{drift}/E_{gain})$.
 - 2. Calculate gain (Polya dist.).
 - 3. Which pixel?
 - 4. Add charge to array in correct time bin for pixel, add ion tail.
 - 5. Convolute with shaper function.
 - 6. Convolute some noise with d(shaper)/dt, add to shaped signal.
 - 7. Find TtoT, ToT, once all the electrons have been accounted.
 - 8. Write out hits.

At the End of the Day:

MCG good for quickly exploring large parameter spaces.

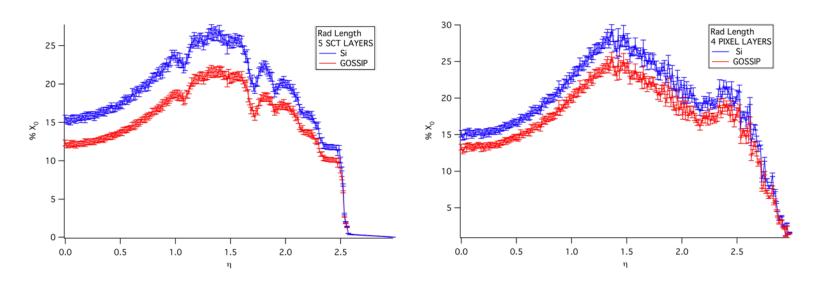
- Garfield is what you want when you find the region of parameter space where you want to look more closely.
- Currently assume constant E field in drift and gain gaps.
 Need to include the actual E field configuration in GOSSIP, and especially around the grid. This should be done with garfield and an FEM package.

Next Task:

Simulate GOSSIP for the ATLAS upgrade.

GOSSIP

Geant4 ATLAS Application framework

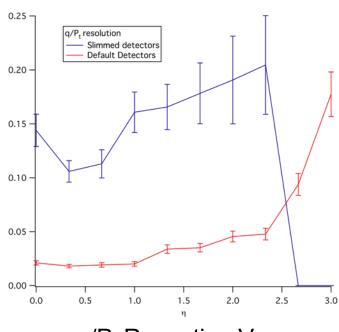

Scheme of Geant4 Atlas Apps

- 1. Define detector geometries and materials.
- 2. Simulate high energy particles passing through material -> Energy loss + location.
- 3. Digitise: Simulate detector output, given info from G4. -> Hit with coordinate.
- 4. Tracking routines.

 Already, after 2 working days, G4AtlasApps seem to be quite flexible:

Can change material, density, dimensions of ID elements.

Good for looking at material budget.



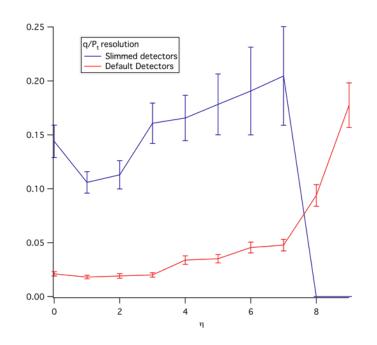
But tracking not working properly.

Geant4 makes hits in the gas or slimmed Si.

BUT:

Digitisation not quite compatible (losing hits in pixel layers).

 q/P_t Resoution Vs. η


But tracking not working properly.

Geant4 makes hits in the gas or slimmed Si.

BUT:

Digitisation not quite compatible (losing hits in pixel layers).

That's OK!

Already more than I expected at this point.

To Do for GOSSIP in ATLAS G4 Atlas Apps

 Define proper geometry elements for GOSSIP to replace pixel layers, SCT.

Completely re-write digitisation routines.

Some aspects already fairly well developed from MCG

Summary

Simulation of nominal GOSSIP fairly well developed.

 Could still benefit from proper E-field modeling and avalanche simulation. => Go with Garfield + FEM.

 Integration into the existing G4 Apps is next step, work is under way.