

GEM-Detector Projects (GEM-TPC & Planar GEM-Trackers)

GSI

Bernd Voss Helmholtzzentrum für Schwerionenforschung GmbH (GSI)

Outline

The Experiment PAND

- The Detectors
 - Simulations
 - Pad Plane
- Front End Electronic
- Higher Level Readout
 - First Results
 - The Future
 - Integration

- PANDA@FAIR
 - Tasks, Requirements & Set up
 - Basic design & Detector assembly
 - Particle flux & Tracks
- Design & Consequences
 - The XYTER Family
 - SysCore / Exploder
 - Noise figures
 - Towards a FAIR-XYTER
 - Detector Control System
 - Detector Mounting
- Road Map 'JointGEM'

PANDA@FAIR

The site

B. Voss et. al.

Setup Overview

GSĬ

GEM-Detectors@PANDA

Basic assumptions

Figures of Merit:

Particle identification

Momentum resolution $\delta p/p$ (p, θ , z, r)

GSI

- particle momentum p
- scattering angle θ
- vertex coordinates z, r

Basic assumptions:

- GEM-TPC ('short' version: 1,5 m → 1,2 m)
- GEM-Tracker, 3..4 stations
- Maximize shape-conformity
 Full angular coverage (φ)
 not possible
- Radiation hardness 100 krad

Target spectrometer@PANDA 'V833'

	Planar-GE	M Trackers	GEM	-TPC				
Figures of merit	Momentum	resolution	+ Particle identification					
Resolutions	Position Double track	$\sigma_{r\Phi}^{} \approx 100 \ \mu m \ pprox 10 \ mm, 5^{\circ}$	Secondary vertex	$\sigma_{r\Phi} \approx 150 \ \mu m$ $\sigma_{z} \approx 1 \ mm$				
		Momentum $\delta p/p \approx 1 \%$						
Solid angle	518°	(226°)	nea	r 4π				
Material budget	0.5 9	% X ₀	1% X ₀					
	Operation in magnetic field (2T)							
Features	multi-track re	arity, fast signal suppressed						
Challenges	High co Low B Low cu	unt rate Field rvature	Continuous Space (5 charged t Event	s operation: charge racks/event) mixing				

B. Voss et. al.

GEM Detector Projects@GSI-DL RD51 mini week, CERN April, 28th 2009

GEM-Detectors@PANDA

...in numbers

F	eature		GEM-TPC	M-TPC GEM-T1 GE		GEM-T3	GEM-T4						
Length (active) mm			1500	60									
Position from target mm		mm	-4001100	810	1170	1530	1890						
Radius	inner	mm	150										
(active)	outer	mm	420	4	50	560	740						
Area		mm ²	0.5	0.6		0.6		0.6		0.6		1	1.7
	GEM foils		3	2 x 3, S	ingle foil	2 x 3, Patche	ed or large-area						
No. of	GEM sectors		300	384		600	1044						
Pad planes			1, single sided										
Projections			2	4, 2 tracklets									
Readout geometry			Hexagonal pads (x,y)	Cartesian (x,y) Concentric circles (φ) Radial strips (r) Tilted strips (+60°, -60°)									
Stru (re:	cture size/pitch solution driven)		4 mm ²	radial concentric	100600 μm 400 μm	> 50 mm 150 mm <	r < 150 mm r < 450 mm						
M	ax. channel no.		80k	20k		32k	45k						
Weight kg		kg	50	20		20 30		30	40				
Gas Ne/C			Ne/CO ₂ (90/10)	Ar/CO ₂ (80/20)									
Drift time / -velocity 50 µs, 2.8			50 µs, 2.8 cm/µs	n x 10 ns									
	Cabling	mm ²	10000	10000									

B. Voss et. al.

GEM Detector Projects@GSI-DL RD51 mini week, CERN April, 28th 2009

7

Prototype GEM-TPC

Detector assembly

B. Voss et. al.

Detector assembly

Planar GEM-Trackers

Layer stacking

GSI

For the set of four (in%)	Active	Absorber (no backing)	Supply	Support	Front-End
Weight Contribution	0,5	4	pprox 33	≈ 34	≈ 28
Radiation Length design goal	0,093	1,405		n ev *)	
Radiation Length status quo technique	0,093	3,485			

*) ,n.ev' = not evaluated so far

\Rightarrow Requested 0,5% X₀ per detector achievable

Detector Structure

Basic design concepts

Maximum deformation (mm)							
U _x	Uy	Uz	U _{res}				
±1,5	± 0,24	12,7	12,7				

Design input:

- Minimize material budget
- ⇒ No mechanical backing structure
- Symmetric frame layout
- FEM simulation:
 - Planar stretching forces by foils
- Results:
 - Much better than half-disk layout
 - Deformations manageable
 - Still needs some support e.g. point-like on outer rim
 - Open questions:
 - Sagging of foils
 - ⇒ Spacers
 (e.g. fishing lines opposing foil layer)

B. Voss et. al.

GEM-Foil

Sectioning

- Discharge prevention
 - Triple GEM setup (per side)
 - Asymmetric gain sharing
 - Segmented foils
- Requirements:
 - Max. 10⁴ mm²/Sector
 - ! Avoid dead areas
 - Avoid gluing to copper
 - ! Easy contact scenario including series resistors

Layout:

- 2x5 µm Copper on 50µm Kapton
- Inter-sector distance 0,1 mm
- Combine ¹/₄-circles & strips
- Contact from window frame (surface) via trough-hole SMD connectors

Planar GEM-Trackers

Simulation results@15GeV/c 🖬 🖬 👖

GEM Detector Projects@GSI-DL RD51 mini week,

SSI-DL RD51 mini week, CERN April, 28th 2009

PadPlane

- Simulation results:
 - HIT-rate 5..50(140)k particles/cm²/s (r)
 - Track lengths: radial 0,5..8 mm (mean 1,3..1,6 mm) angular 0..0,8° (mean 0,15°)
 - Cluster sizes <1 mm (single-cluster HIT to be avoided)
- Purely resolution driven
- Patterning structures under investigation
 - 2D, pitch 400µm, 2 combined on every side
 - Strips
 - 1. Circular/polar + Radial
 - 2. Circular/polar + 60° Tilted
 - 3. Cartesian
 - 1. Pixels regular polygon shapes
 - 2. Hybrid readout structures

PadPlane

Pattern design

[GEM	Circular	Radial , <i>acentric</i> '	Radial , <i>isocentric</i> ʻ	60°Tilted	Cartesian			
	1/2		5888 (1571)	5880 (2096)					
	3		9600 (1571)	9600 (2096)					
	4		13440 (1571)		13400 (2096)				

Required for constant resolution, Assumed in simulations

Problems with Patching (GEM4)

Signal routing

- Patching process → Dead areas & Increased material budget
 - (Support & Additional routing layers)
 - \rightarrow Cut channels \rightarrow unequal length, non-uniformity in response

Pad Planes (3..4 GEM-Ts)

Structure size	Resolution evolution	Channel no.				
	decreasing	2026	kch			
0.30.5 mm	constant	96116	kch			
1 mm	8095	kch				

FEE system (to be used with TPC & Trackers)

- 'Division bar' not sufficient nor feasible Circumferential arrangement FEE-Ring width ≤ 50 mm ≈ 7..11% of total detector area
- (n-)XYTER-based FEB cards
 (2 ASICs à 128 channels each, 100x65mm²)
 180..900 cards
- → overall operating power 21 mW/channel → 2,7 W/chip !
- → ≈ 1..5 kW power/cooling requirements, Axial cooling structure,
 ≈ 30% of weight

(n-)XYTER

- AMS CMOS 0.35 μm technology
- 128 channels / chip
- Charge-sensitive preamp
- Fast (30ns) & Slow (150ns) Shaper
- Peak detector

- Time-stamping with 1 ns resolution
- Data driven, autonomous hit detection
- Token ring readout @ 32 MHz de-randomizing, sparcifying
- Expected noise:

370 e-@10pF, 550e-@20pF

Front-End Electronics XYTER testing board

- Simple hybrid PCB with
 - signal fan-in
 - ADC
 - interconnect to DAQ chain (SysCore / KIP, Exploder / GSI)
 - CBM beam time September 2008: whole signal chain operative
- 'Chip-In-Board'
 - avoids space eating vias
 - allows pitch adaptation:
 - 50,7 µm on chip
 - 101,4 µm on PCB (two levels)
 - 10 Rev. C boards, fully functional

Front-End Electronics XYTER TPC Prototype board 🕞 🖆 👖

Experimental data

Energy-Output (preliminary)

- Si Detector
 - 300µm strip-pitch
 - DC coupled
 - **40**V
- Pulse-height spectra on one strip
 - 'as is, on the table'
- Enhanced low-energy part:
 δ-electrons & other scattering

Experimental data

Energy-Output (preliminary)

- Pulse-height spectra
 - with internal test pulse
 - C_{det} not determined (5-10 pF)
- Peak-to-peak distance ~5560e-
- σ ~425e- (370e-expected)

- ⇒ Analog read out chain operative
- Temperature coefficient spoils the effort

Front-End Electronics n-XYTER Engineering Run 🖬 🖬 🏛

- Preparations by Hans Kristian Soltveit (Physikalisches Institut Heidelberg)
- Several thousand chips@110k€
- Issues addressed:
 - Temperature coefficients on three amplifiers
 - Pad arrangement, input-ESD-pads, LVDS in/out arrangements
 - Shielding (in particular mono stable cross-talk)
 - Choice of process
 - Epoch marker output
- Time line (03/2009):
 - Current: Extensive corner analysis on new schematics
 - End of April: Finalize schematics & Review on modifications
 - May & June: Layout modifications
 - End of June: Submission readiness review & Successive submission to AMS

The Future: FAIR-XYTER ... for gaseous detectors

	GEM-Tracker	GEM-Tracker GEM-TPC Others					
Channels/chip	32	2-128	64-128				
Power limit/channel		10mW					
Noise limit	500	e⁻@5pF	500e ⁻ @5pF, 900e ⁻ @25pF				
Max. rad dose		100 krad					
Avg. det. capacity		7 pF	7 150 pE				
Max. det. capacity	2150 pF	7 pF	7150 με				
Rate/channel	411/200kHz	250 kHz	250 kHz				
Ampl.	94 ke 25 ke		> 25 ke				
Signal distribution	La	andau					
Measured feature	Spatial resolution	+ Hit-time					
Signal shape		3040ns					
Max. possible signal	200ke = average*2	750ke=average*30	1000ke, 3000ke, Dual range				
ADC res./ampl.		7 bit, 5 ke	8-9 bit linear, 4 ke				
Time resolution	10ns/hit	4ns/hit	4ns				
Special tasks	Spark protection	+ baseline restoration	+forced neighbor readout				

B. Voss et. al.

Detector Control & Monitoring

Structure

Current concept:

- Modular, expandable, flexible
- Same structure for all GEM-Detectors
- Hierarchical interlocking
- Failsafe operation
- Hard- & software limits
- Integration into PANDA-DCS database started
 - Identified 45 parameters so far

Detector-Mounting

'Riddle' design

- Optimize position determination
 → Maximize inter-detector distances
- Equalize weighting of information
 → Balance inter-detector distances
- Maximize shape-conformity
- Symmetrise the loads, moments and thicknesses
 - Minimize mounting and adjustment efforts
 - Simple & stiff support structures
 - Multi-conical shape of the supports ('Matroschka' principle)
 - → Shell structure (0.5..1mm CRP)
 - → 50µm sag

Road map

FP7-JRA WP24 (605 k€ granted)

GEM-TPC, GEM-Tracker		2009		2010			2011				2012					
Task	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Precursor-Prototype design / fabrication / test																
Development of thin large area GEM foils																
Development of large read-out structures																
ASIC (and FEE) adaptation and optimization																
Quality control and calibration																
Material research																
TPC field-cage study and optimization																
Light-weight frames and support structures																
Read-out and DAQ																
Detector assembly and integration																

PANDA Time horizon: 2016..2018

FAIR Facility for Antiproton and Ion Research

GEM-Projects: TPC¹ & Tracker² GSI crew-members & tasks

Jörg Hehner¹ Andreas Heinz¹ Markus Henske¹ Radoslaw Karabowicz² Volker Kleipa¹ Jochen Kunkel^{1,2} Rafal Lalik¹ Christian Schmidt¹ Sandra Schwab¹ Daniel Soyk¹ Eduard Traut¹ Ufuk Tuey¹ Bernd Voss^{1,2} Jan Voss¹ Joachim Weinert¹

Aging tests PadPlane, GEMs, sensors, WebInfo Material tests, sensors, infrastructure, purchase **Root-Simulations** Front-End Electronics (XYTER) Mechanics, drawings, simulations, assembly Front-End Electronics (XYTER) Front-End Electronics (XYTER) Part production, tooling, FOPI environment **FEM-Simulations** GEM generals General mechanics, drawings ,All & nothing', ideas & concepts, project & logistics General mechanics, material tests Part production, tooling

651

GSİ

Backup slides

Precision spectroscopy: mass, width, branching ratios

- Charmonium
- Gluonic excitations above 2 GeV/c²
- Charmed meson properties in nuclear medium
- Double hypernuclei production and spectroscopy
- Electromagnetic processes
 - Time-like electromagnetic form factors
 - Generalized parton distributions
 - Transverse spin distribution in nucleons
- Open charm physics
 - Spectroscopy
 - Rare decays
 - CP violation in charm sector

TPC Layout @ PANDA

Basic Properties

B. Voss et. al.

- 2·10⁷ annihilations / s
- 5 charged tracks / event
- v_D=3 cm/µs, L=150 cm ⇒ t_D^{max}=50 µs
 ⇒ 5000 tracks superimposed in one TPC "picture"
 ⇒ tracks mixed in time

GEM Detector Projects@GSI-DL RD51 mini week, CE

PID Performance

PID Processes:

- Cherenkov radiation: above 1 GeV
 - \Rightarrow radiators: **quartz**, aerogel, C₄F₁₀
- Specific energy loss: below 1 GeV
 - ⇒ best accuracy with **TPC**
- Time of flight
- \bullet EMC for e and γ

Cooling Motivation

Simulations

B. Voss et. al.

Analogue Pulses, Peaking Time, Front-End Noise

B. Voss et. al.

GEM Detector Projects@GSI-DL RD51 mini week, CERN April, 28th 2009

- SysCore generates 48 to 64 bit data elements:
 - n-XYTER provides
 - 14 bit time stamp @ 1ns resolution
 - 7 bit channel number
 - FEB provides
 - 10 bit peak height
 - SysCore adds
 - chip number
 - epoch counter
 - some diagnostic
 - SysCore provides data FIFO
- The serialized event number with successive time stamp could be fed into auxiliary inputs.
 - This event header would be added to the data elements
 - Such synch scheme should be fine up to about 50 kHz event rate

Relate local time stamps to global events:

Feed a global epoch marker or event strobe into SysCore

Test Setup

- n-XYTER-FEB
 - n-XYTER
 - FEB and Bonding Technology
 - Documentation (Manual)
- ADC
- Interconnect
- SysCore / Exploder
 - Firmware
 - Embedded software
 - Soft configuration
- Ethernet-Interconnect
- PC and DAQ
 - KNUT
 - GUI
 - DAQ System

Ongoing:

Realize software design freeze to be packaged

Still missing:

Diagnostic toolbox for system analysis to make successful deployment in other labs feasible

The 'Riddle'

Deformation under load

