

Run-, LumiBlock- wise "Conditions Data" and associated tools

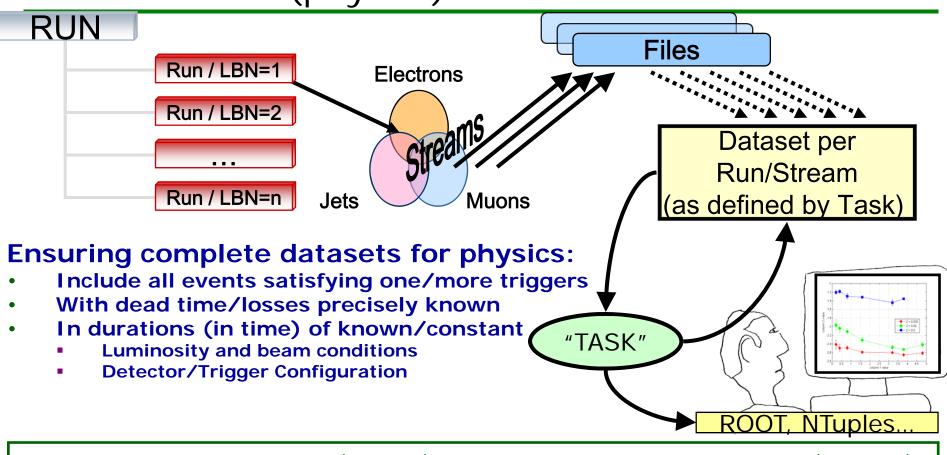
Elizabeth Gallas - Oxford ANL Analysis **"JAMBOREE"** May 22, 2009

I've never been to an "ATLAS jamboree". My research into the term 'jamboree':

Wiktionary entry:

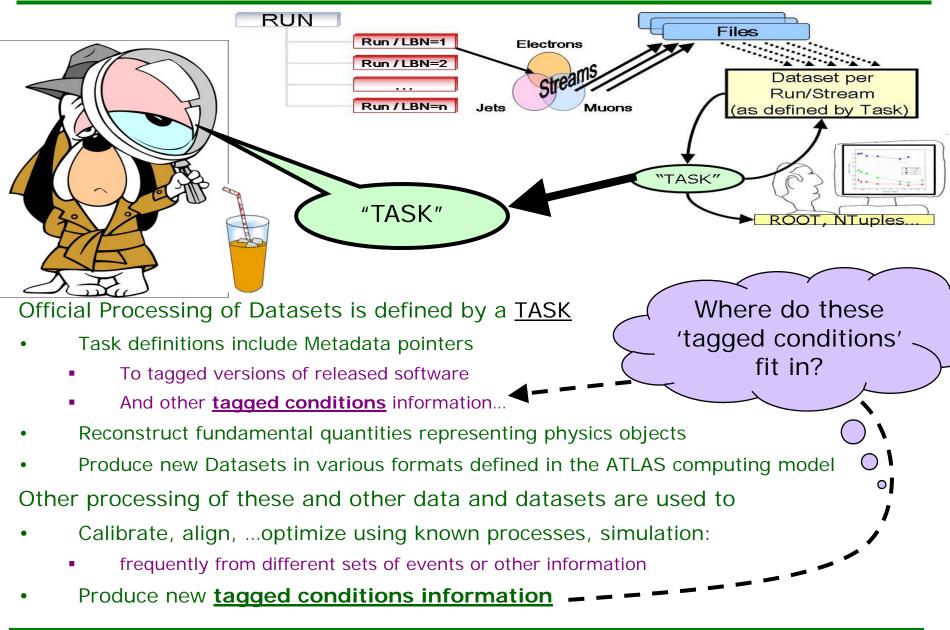
- ✓ jamboree (plural jamborees)
 - ➤ A lavish or boisterous <u>celebration</u> or <u>party</u>.

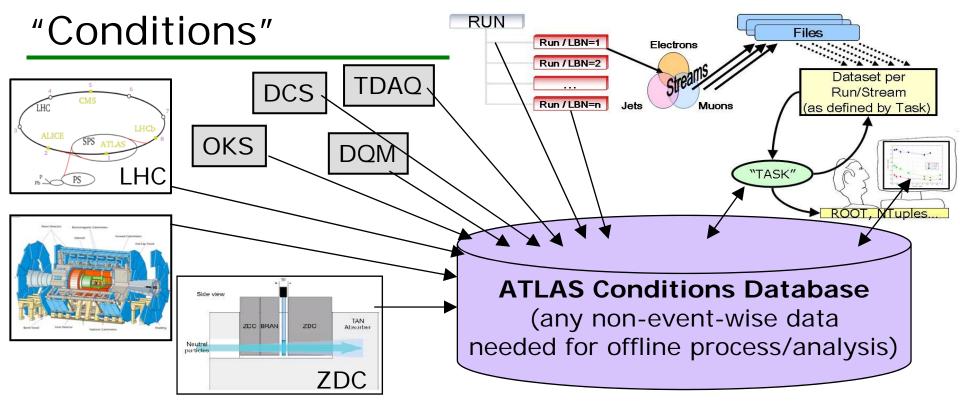
I image you all sitting in plastic lawn chairs with a cold drink (and your laptop).
All images displayed meet the google safe search criteria.



What's on the Menu ?

- Data path for physics events
 - Importance of complete samples
- Generalized "Task" description
- Data path for "Conditions"
 - The ATLAS Conditions Database
 - Stores a wide variety of conditions
- Luminosity
 - The Luminosity Working Group
 - Data sources and normalisation
 - Using tools to access conditions for studies and analysis
- Distribution of Conditions data on the grid
- Tools for getting samples of interest
 - Run-, Lumi-, and Event-wise criteria
- Summary
- Conclusion

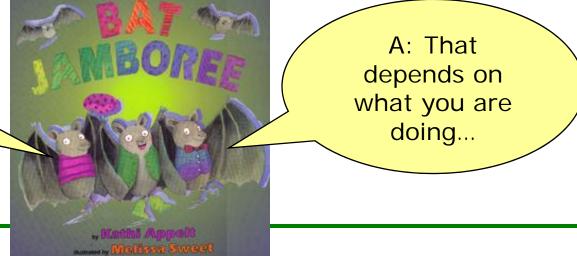



Data Paths for (physics) "Events"

- Events recorded in Runs (~hours)... divided into "Luminosity Blocks" (minutes)
- Events written to one/more Physics Streams ... based on trigger decision(s)
- Physics Streams are written to files ... respecting LB boundaries
- Files are processed into Datasets (careful accounting detect losses/failures)
- Track: Provenance (processing history); In-File metadata: list of analyzed LB's.

Our many "Tasks"

"Conditions" – general term for information which is not 'event-wise' reflecting the conditions or states of a system – conditions are valid for an interval ranging from very short to infinity.


Any conditions data needed for offline processing and/or analysis must be stored in the

ATLAS Conditions Database

ATLAS Conditions Database

- Based on LCG Conditions Database infrastructure
 - Using 'COOL' (Conditions database Of Objects for LHC) API
 - Casually referred to as 'the COOL database' or 'storing in COOL...'
- COOL DB is an "Interval of Validity (IOV) Database"
 - Allowed interval based on <u>Timestamps</u> or <u>Run/LB</u> ranges
- COOL 'Folders' -- Can be thought of as Tables
 - Indexed by: <u>IOV</u>, optional <u>channel</u>, optional <u>COOL tag (a version)</u>
 - Folder names are mnemonic and hierarchical (like UNIX pathnames)
 - ✓ indicating the relationship of one folder (or set of folders) to the next
- COOL Folder 'payload' == the data (the rows in the table)
 - Many storage options available within Conditions infrastructure
 - Optimized to the type of information being stored
 - Alternatively, the payload can be a pointer to an external structure (POOL file) or to another table.

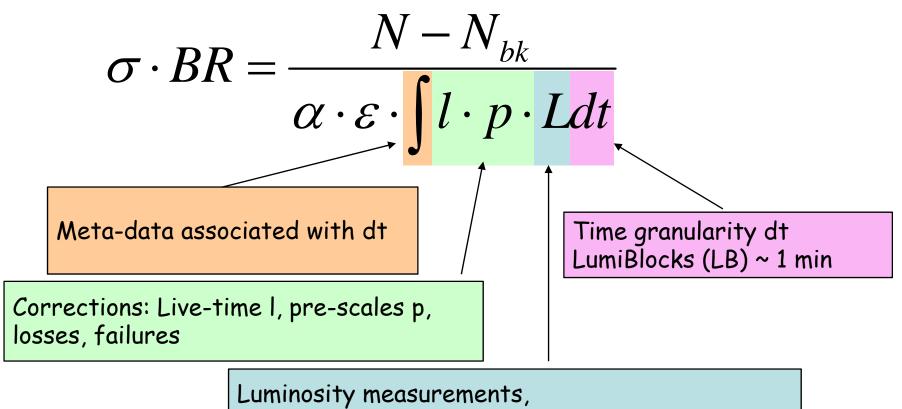
Q: What conditions does the average bat need ?

Conditions for the (a)typical bat:

- Common tasks: standard tools make COOL DB transparent to users
 ✓ Some existing methods described later
- For specialized tasks:
 - COOL DB is readable in Athena: <u>CoolAthena</u> and <u>AthenaDBAccess</u>
 - You can make a ROOT file from COOL: <u>AtlCoolCopy</u>
- Where is documentation on COOL Folder content ?
 - Folders are generally described on TWiki pages
 - Good example: TWiki: <u>CoolOnlineData</u>
 - Poke subsystem experts
- A sampling of information stored in COOL:
 - LHC beam conditions
 - online configuration and operation *
 - calibration
 - alignment
 - data quality *
 - Iuminosity and normalization *
 - object reconstruction efficiency * and
 - bookkeeping data
 - ✓ cross checks of data completeness/integrity.

I'm glad you mention luminosity: Where can I find that for my data sample ?

Elizabeth Gallas

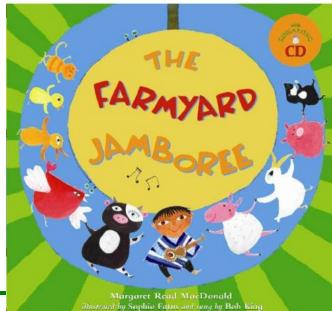

Progress in Luminosity area

- Luminosity Working Group (April 2008) Members appointed to represent their ATLAS communities
 - Co-conveners: Benedetto Giacobbe and Marjorie Shapiro
 - Run Coordinator: Witold Kozanecki
 - TDAQ: Thilo Pauly
 - Conditions DB: Elizabeth Gallas
 - LUCID: Jim Pinfold
 - ALFA: Per Grafstrom
 - ZDC: Sebastian White
 - LHC Machine: Helmut Burkhardt
 - ATLAS-LHC Liaison: Sigi Wenig
 - SM Min Bias: Craig Butar
 - SM QCD: Uta Klein
- E-group: <u>luminosityGroup</u>
- Twiki: <u>LuminosityGroup</u>
- Aim: Provide a physicist doing offline data analysis with the information and software tools required to determine the instantaneous and integrated luminosity for any data sample with sufficient data quality.

A Tall order

- Determine Instantaneous Luminosity
 - Online measurement of Relative luminosity
 - Absolute Calibration
 - Point 1 Luminosity Panel
 - Offline luminosity determination
- Deadtime, Losses and Failures
- Assess Luminosity DQM
- Get all related data into COOL
- Use of Lumi Info in Studies/Analysis
 - Develop integrated plan with DQ
- Many more details: see talk in ATLAS WEEK
 - 20-Feb-2009: M.Shapiro/B.Giacobbe

Cross Sections and Luminosity


integrated + instantaneous (bunch-by-bunch)

Luminosity WG provides oversight in all these areas

The Luminosity Farmyard

Absolute Measurements

- Beam Parameters: 5 -10%
- ALFA : 2-3%
- Physics Processes with well calculable x-section
 - Pp-> ppee, ppµµ (low rate, eventually ~1-2% systematics?)
 - W/Z Production (high rate, but few % systematics)

Relative Measurements

L(t)

 $\cdot l(t) \cdot p(t) \cdot f(t)$

- LUCID
- BCM
- ZDC
- MBTS
- L1 Calo Rates
- Min Bias Trigger Rate
- TileCal Anode, LAr Currents
- Offline physics signals
 - Pixel space points
 - Vertex counting
 - Resonance rates
- In all cases:
 - Monitor luminosity vs time (LB).
 - Calibrate to absolute measurements after the fact

Initial Strategy for Luminosity Determination

- Relative luminosity determined from ATLAS detectors:
 - LUCID
 - BCM
 - ZDC
 - MBTS
 - Others for monitoring purposes
- Correlating results from different detectors and methods will allow us to assess systematics and sensitivity to background and acceptance
- Absolute calibration done via special runs w/LHC
 - Van der Meer Scan
- These calibrations will factor into the algorithm: provide real-time luminosity number based on measurements available
 - broadcast to LHC and detectors subsystems

$$\int dt L(t) \cdot l(t) \cdot p(t) \cdot f(t)$$

Deadtime, Losses and Failures

$$\int dt L(t) \cdot I(t) \cdot p(t) \cdot f(t)$$

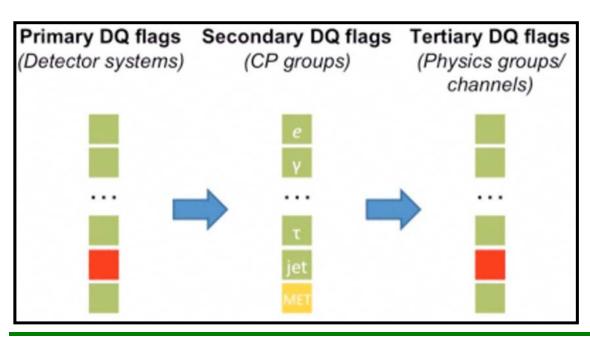
- Auditing Issues:
 - At each stage of processing must monitor number of input and output events to ensure no unexpected losses
 - Infrastructure in place for Level 1 Trigger
 - Tier 0 infrastructure in place to prevent processing if missing SFO files
 - HLT auditing strategy needs review
 - Analysis of failure modes for data reprocessing and user analysis in progress

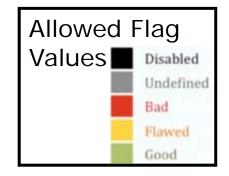
Luminosity related measurements in COOL

- Work in progress: decisions on what to store factoring in what might be available over time and how that data might be used in the offline
 - For each subdetector, DCS, LHC
 - TDAQ (deadtime, prescales)
 - Wiki pages:
 - LuminosityOnlineSummary, LuminosityOnlineMonitor, LuminosityOnlineCool and LuminosityOffline
- Online:
 - Best online estimates: total and bunch-by-bunch
 - Store raw measurements for offline analysis
- Offline: luminosity calculated after the fact
 - Expect methods to improve as we learn more
 - Stored in COOL with COOL tag (version).
- Detector Status from DQM
 - Stored in COOL with COOL tag (version).

Additional help to meet the challenge ...

- Scope of task list makes it interesting and fun
 - extends from LHC beam through the final analysis of events
 - ✓ And many things in between
 - Each task must be aware of integration issues up/down stream
 - Early analyses unaware of certain aspects may miss the mark
- Joining the band: Online, offline analysis thrill-seekers
 - Andrej Gorisek, David Berge, Stefan Maettig, Mika Huhtinen, Saverio D'Auria, Carla Sbarra, Antonio Sbizzi (... LUCID team), Slava Khomutnikov
 - Balint Radics, Soshi Tsuno, Akira Shibata, Regina Kwee, Kostas Nikolopoulos, Max Baak (and DQ coordinators)
- Advice/Help understand boundaries of infrastructure
 - Richard Hawkings, Giovanna Lehmann, David Malon
- Apologies to those I missed !!!
- Remains long list of tasks
 - Cross checks at every stage
 - Known unknowns
 - ✓ Each detector will have systematics
 - Unknown unknowns
 - ✓ Beam conditions...




22-May-2009

Elizabeth Gallas

DQ Group: Model for DQ assessments:

- Levels of assignment:
 - Primary
 - ✓ detectors and trigger slices,
 - secondary
 - ✓ CP groups
 - tertiary
 - physics channels optional
- DQ Flags stored in COOL
 - With LB (or LB range) granularity
- Ongoing discussion on many issues

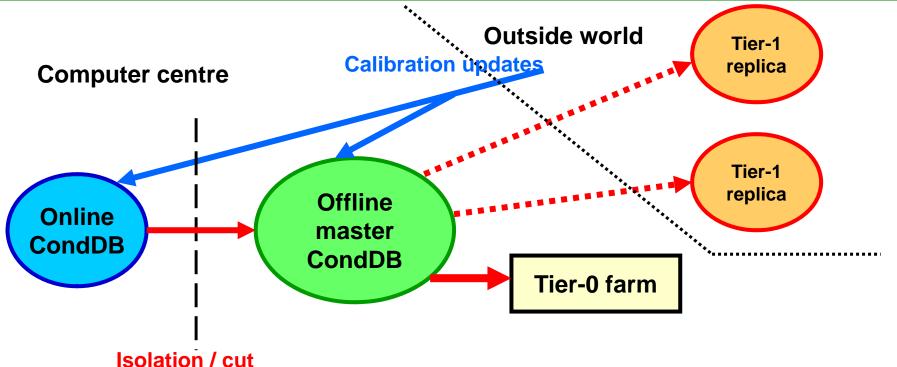
22-May-2009

Elizabeth Gallas

Calculating Luminosity for your sample

Basic model:

- Stored in the data files: a list of analyzed LB's
 - ✓ Size of this record is modest for most analyses; Does not change with time
- Stored in the Database: Luminosity, Prescales, Deadtime, DataQuality
 - ✓ Too much to store in-file; Latest COOL tagged Lum, DQ... dynamically available


Modes of analysis:

- 1. Each ESD/AOD/DPD file made in production or physics group SKIM contains in-file metadata: The list of LB's that have been processed
 - Same object stored in all 3 types of file
- 2. Query TagDB and iterate through EventCollection
 - Work underway to make this possible
- 3. Customized skimming:
 - make sure no events lost due to crashes (Missing events invalidates lumiCalc)
 - Must include this object record of all LB processed by your skimming job

Using LumiCalc.py: TWiki CoolLumiCalc (Prototyped: during FDR0,1,2)

- See Richard Hawkings talk 15-May-2008 in FDR Users meeting.
- Input: List of data files, Name of Trigger
- LumiCalc returns luminosity per file and total integrated luminosity
 - Corrects for deadtime and prescale factors
 - Extended to allow user to specify good run/LB list from DQ in COOL

Conditions Database replication: Tier-0 and Tier-1

- ISUIALION / CUL
- Master copy of ATLAS Conditions DB stored at CERN
- Data replicated to Tier 1
 - Using Oracle Streams technology
 - Can include non-COOL data (subdetector CORAL tables)
 - Only data needed for offline reconstruction/analysis
 - ✓ For example, some luminosity for studies only at Tier 0

Conditions DB distribution on the grid

Conditions Database access methods on the grid

- Direct Oracle Access
- SQLite replica (files) create a 'slice' of Conditions data
 - ✓ Selected folders
 - ✓ Selected COOL tags
 - ✓ Selected IOVs
- FroNTier/Squid (web) caching technology (developed by CMS)
 - Being tested for use in ATLAS for various use cases

Each technology has advantages/disadvantages

Use cases dictate which technology is best

Trying to flesh out use cases for distributed analysis by users on the grid:

- Pre-knowledge of the input data needed by a job (production tasks)
 - Use Metadata to create local instance of data on/near where the job will be run
 - ✓ Sqlite files could contain: latest Luminosity, Data Quality and Efficiency...
- Ad-hoc queries (generally user tasks), where the task is less orchestrated:
 - Tier 1 RACs on multicore servers make ad-hoc queries more performant
 - Metadata, as well as the data it points to may be in the database or the Conditions DB reference is the Metadata is used to find the data
 - Metadata is used to retrieve the required data from the closest location

How do ATLAS physicists find Runs/Events of interest?

Physicists have broad interests/responsibilities in ATLAS. They need to find and analyze events offline. How do they find Runs and Events for their purpose ?

Finding Runs of interest:

Examples:

- Sub-detector experts looking for cosmic ray data
 - ✓ And they'd like events with particular subdetectors engaged ...
- Physicist in Group X wants to find events in Runs
 - designated by Group X to be 'good'

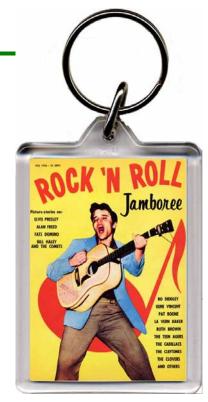
Solution: RunQuery tool: <u>http://atlas-runquery.cern.ch/</u>

- Web based system for querying the Conditions Database
- Allows the user to find the Runs of interest satisfying various Conditions (time, Detectors configured, Detector status flags...)
- Find datasets in AMI: <u>http://ami.in2p3.fr/</u> with a replica on cern.ch soon
 - Find your datasets, their provenance, their configuration tag meaning
 - ✓ Writes your dq2-get for you...

Finding Events of interest:

Example:

Physicist wants to select events with offline electrons with pT > 30 GeV...


This is the basis for the ATLAS TAGs Application (next slide)

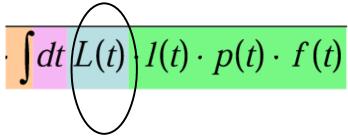
Metadata for Users: ATLAS TAGs

- PURPOSE: Facilitates event selection for analysis
- Available in File and Database formats (Storage: kB/event, >1TB/year)
 - Technical challenges in Poster on ATLAS TAGs distribution/management
- 'TAG Database' Application includes
 - Event-level Metadata produced routinely in data processing campaigns
 - ✓ About 200 indexed variables for each event: Identification keys, global event quantities, Trigger decisions, number of reconstructed objects (with their pT, eta, phi for highest-pT objects), Detector status, quality, physics, and performance words....
 - 'Run Metadata' at Temporal, Fill, Run, LB levels (from Conditions)
 - ✓ Has potential to add improved information (after ESD/AOD/TAG prod)
 - > Data Quality assessments
 - Efficiency calculations
 - > Luminosity corrections
 - References to Files for back-navigation
 - A variety of supporting tools and infrastructure
- Various components ATLAS TAG application are described
 - In this meeting
 - Recent CHEP presentations.
 - All software tutorials feature session on TAG usage

Summary

- Conditions DB infrastructure and distribution
 - Supports the conditions needed for processing, reprocessing, calibrations, alignments and vast array of offline studies and analysis
 - Distribution challenges addressed successfully so far
 - ✓ Use cases for analysis will expand with time
- Luminosity effort making headway on large task list
 - Much of the data to be stored as 'conditions' in COOL
 - ✓ Tools being developed accordingly
 - Significant work still to be done: more hands needed
 - Prototype Tool for Physics Users already exist
 - ✓ Exercised in Streaming Test and FDR
- Increasing array of tools making Conditions more accessible

Back Up Slides


Links

- Conditions Database users guide:
 - http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/project /online/doc/conddb_conventions.pdf
- LCG TWikis:
 - https://twiki.cern.ch/twiki/bin/view/LCG/COOL
 - https://twiki.cern.ch/twiki/bin/view/LCG/PyCool
- ATLAS TWikis:
 - ConditionsDB (Main)
 - CoolATLAS
 - AthenaDBAccess
 - CoolAthena
 - CoolPython
 - AtlCoolConsole
 - AtlCoolCopy
 - CoolUtilities
 - CoolProdAcc

- CoolConnections
- CoolTagging
- CoolPublishing
- CoolProdTags
- CoolFileMetaData
- CoolTools
- InDetAlignHowTo
- CooIDCS (PVSS-2-COOL)
- Cool2Root ?

. . .

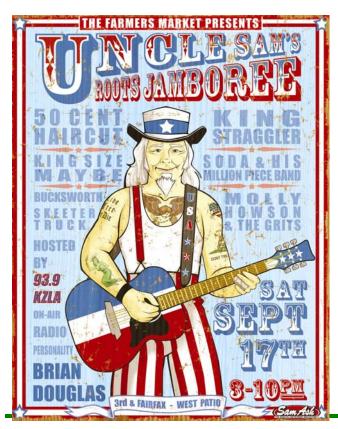
Offline Determination of Luminosity

- Determination of luminosity from LUCID non-trivial:
 - Must understand acceptance, backgrounds
 - At beginning will take time
 - Dedicated work required by LUCID group
 - Studies of alternative algorithms underway
 - ✓ see for example talk by M. Bruschi at LumiGroup meeting
- Compare LUCID determination with results from other detectors
 - evaluate systematics
- The luminosity group is responsible for providing "best" value of luminosity per LumiBlock:
 - Work just beginning in this area
 - In process of identifying point-person for each detector
 - Work must be coordinated with luminosity DQM
 - More manpower necessary

Luminosity Data Quality Monitoring Goals

- Evaluate systematic uncertainties on lum measurements
 - Backgrounds
 - Nonlinearities
 - Changing beam conditions
- Flag any bad data that makes it through online checks
- Monitor wide range of rates that should scale with luminosity
 - Study correlations between different rates to evaluate systematics and separate detector problems from luminosity problems
- Two categories of information:
 - High rate triggers and currents that provide information per LumiBlock
 - Lower rate physics processes that provide information integrated over longer time scale (eg a full run)

Offline Data Quality Monitoring : Operational Strategy


- Fall 2009 effort will concentrate on offline monitoring via CAF
 - Need real data to understand where the real problems are
- As much as possible, piggy-back on existing efforts:
 - Min bias trigger and analysis
 - Inner Detector Monitoring
 - Forward detector analyses
 - At present, separate offline algorithms exist for monitor plot:
- Must integrate into single analysis job and develop operational model
- Goal for 2010 to migrate to Tier 0 DQM
- One complication: Must combine analyses from several stream and from COOL
 - Work required here

Metadata Bookkeeping for DPD's

- DPDs created from AODs for specific stream
- Some jobs may fail:
 - Core dumps
 - Some files not delivered
- Good News: Since AOD files are only closed on LB boundaries
 - We can calculate luminosity with partial dataset
 - But some LB may not have events in our AOD:
 - Need record of all LB processed by your skimming job
- Solution to bookkeeping problem:
 - Store the list of processed LB as in-file metadata
 - This works as long as job failures are properly handled

22-May-2009