

What early data means to me.
Potential for new physics?
Some interesting signals.
Outlook

The Search for New Physics

Looking for physics beyond the SM gives us something to do while we collect enough antimatter to terrorize the Vatican...

(Not to scale)

Ten Versus i oui teen

- At 10 TeV collision energy, signals involving high energy physics are always smaller.
- Rare, low background signals almost always lose compared to 14 TeV.
- Unless the reaction itself grows with energy, other cases are controlled by the parton flux.
- Electroweak signals, with significant top backgrounds can actually gain ground - high energy quark initial states lose less than gluon initial

states.

CHCs & undersons

• With Luminosities of order inverse fb, we will collect unparalleled statistics for **Process** of (Nb) processes: (**JLdt = 100 pb**⁻¹) Min bias 10⁸ ~10¹³ bb Top quarks5 ~10¹² Inclusive jets sections of order fb caprinclude $p_T > 200^{\circ}$ GeV interesting search processes: W $\rightarrow \oplus$, µtviggs (sofnetimes) ~10⁶ Z $\rightarrow \oplus$ µtbolored Super-particles (light ones) to Z-primes. ~10⁴

Early New Physics at LHC

- So where does the LHC have a shot at an early discovery?
 (Besides elevator shafts...)
 - O Some properties of the new physics would help a lot:
 - High cross sections (strongly interacting).
 - Strong energy dependence of signal.
 - Low background / Striking morphology.

O There is tension between early discovery at the LHC and not already being ruled out by Tevatron/LEP.

Strongly Interacting Particles

Top Decays

- With I fb⁻¹, LHC will produce about 10⁶ top pairs.
- Such a large sample allows one to search for rare decays, such as into Zq or γq where q = u or c.
- SM BRs are expected to be around 10⁻⁹. An early observation would be a clear sign of BSM physics.
- Large enhancements over the SM are possible from loops of i.e. MSSM particles.

Ayana Arce, Aspen Winter '09

Single Top

TT '99

I fb⁻¹ results in hundreds of single top events, and should allow observation of s-, t-, and tW modes.

Interesting deviations can be signs of new physics!

LHC is the first opportunity to observe the tW associated mode, which is possible with 1 fb⁻¹ !

New Quarks?

New quarks can be produced in pairs through the strong interaction.

- Chiral fourth generation quarks decay through W's into lighter quarks.
 - Precision electroweak measurements limit their masses to below about 500 GeV.
 - O Six W's and 2 b's! Wow!
- Vector-like quarks can have FCNC decays involving Z or Higgses.
 - Beautiful Mirrors A^bFB!

Choudhury, TT, Wagner '01

Pair production results in appreciable events up to masses of around I TeV.

Missing Energy

- The cosmological existence of dark matter is strong motivation to search for new forms of missing energy.
- Nowadays almost any vision of BSM physics has or can be extended to include a dark matter candidate
 - O Lots of examples yesterday...
- Missing energy is a calibration-intensive observable.
 - There is Tension between large missing
 E_T and low production of heavy mass states.

`Cold Dark Matter - an Exploded View` Cornelia Parker

- Provided the colored states are not too heavy, there can be enough rate.
- Decays involving charged leptons help a lot.
- Generic SUSY models may take quite a bit longer.

This study considers a CMS-like detector and compares the spectrum of missing energy resulting from three different SUSY models.

200

400

600

800

1000 1200 1400 1600 H_T (GeV)

Strong Energy Dependence

Compositeness

- Compositeness is modeled using effective field theory, by adding higher dimensional operators to the SM Lagrangian.
- (In fact, this is model-independent description of heavy physics as seen at low energies)
- Tevatron limits (real analyses only exist from run I data) can be guestimated to bound the scale Λ to be greater than around 2-3 TeV.

 $[ar q \gamma^\mu q] \, [ar q \gamma_\mu q]$

Compositeness

Higher dimensional operators produce cross sections which grow with energy!

Going from 2 to 10 TeV can produce huge effects!

 \bigcirc

Striking Signals

Higgs at the LHC

Higgs

- With small data sets, Higgs is a challenge.
- O There is rate for gluon fusion production modes, but it must be paired with an observable decay mode.
 - Low mass Higgs decays are not always 'striking'.
- WBF has more handles, but with smaller rates. It is probably tough to take advantage of with 1 fb⁻¹.

Heavy Higgs

- With I fb⁻¹, heavier Higgs masses can be discovered, decaying into weak bosons.
- This would already be a hint of things to come - precision electroweak tells us such a heavy Higgs will come with some other kind of new physics.
 - Something to discover alongside the Higgs, or something to look forward to...

Most difficult region

Outlook

There is a lot of potential for early discoveries with the LHC.

But we do need to get a break with the new physics!

- Signals for an early discovery not already ruled out by earlier experiments will either:
 - Involve low mass strongly interacting particles
 - Have cross sections which grow with energy
 - > Have striking signals involving small and easily understood backgrounds.
- Any of these options are motivated, would be exciting, and raise a lot of new questions we will have more fun answering!

