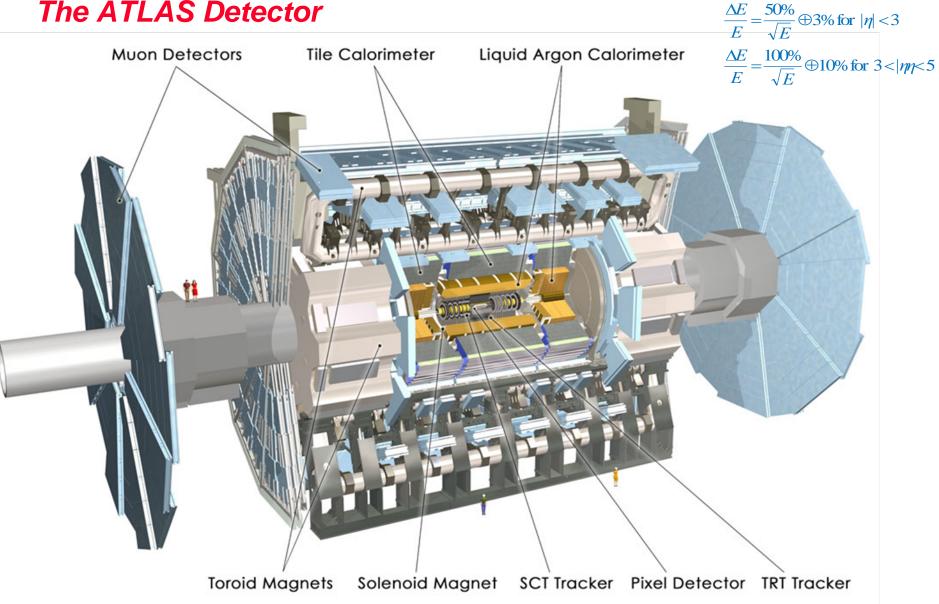


... for a brighter future

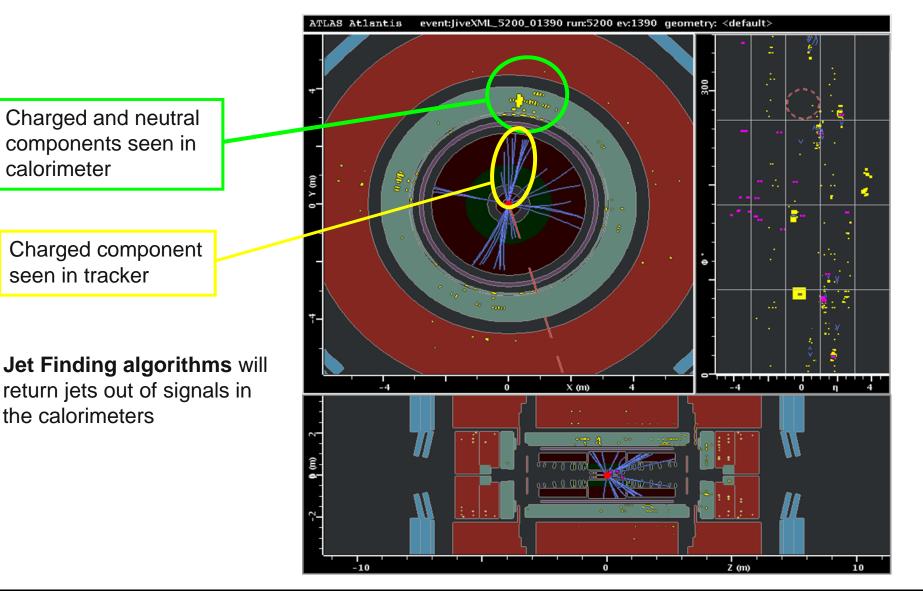
UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC


Jet Energy Scale and Calibration Framework

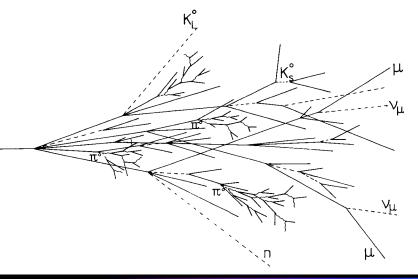
Belen Salvachua

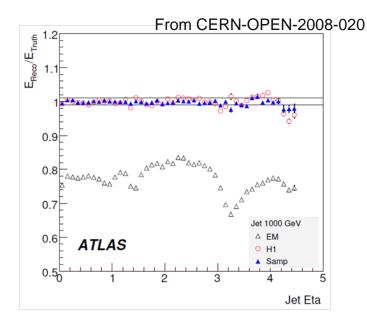
High Energy Physics Division Argonne National Laboratory


ATLAS Analysis Jamboree, 20th May 2009

The ATLAS Detector

How we detect products from interaction

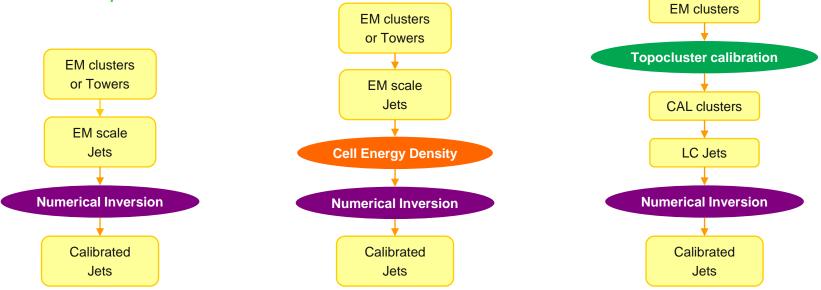



Why do we need a jet calibration?

- Different response electrons/hadrons.
 For hadrons:
 - Visible EM energy ~ 50%
 - Visible non-EM energy ~ 25%
 - In-visible energy ~ 25%
 - Escaped energy ~ 2%

Main reason for non compensation

Detector DEAD material and GAPs



- Other corrections:
 - Energy not included in the Jet Finding algorithm
 - Additional energy due to underlying and pile-up events

Initial Jet Calibration proposed for ATLAS

- Three methods are being proposed for initial calibration all based on Monte Carlo:
 - Numerical inversion:
 - Recovers the Jet Energy Scale (JES)
 - Cell energy density + Num. Inversion:
 - Improves resolution and recovers JES
 - Topocluster calibration + Num. Inversion:
 - Improves resolution and recovers JES

Monte Carlo truth jets

- Following corrections attempt to calibrate the measured jets to particle truth
- How we define truth?
 - Particle-in-cone (PIC):
 - Define a jet with the MC truth particles that fall around the measured jet cone
 - Nearest-truth-jet (NTJ):
 - Run Jet Finder over MC truth particles
 - Match the nearest-truth-jet to the reconstructed jet
- Where is this important?

Numerical Inversion Cell Energy Density (H1-style)

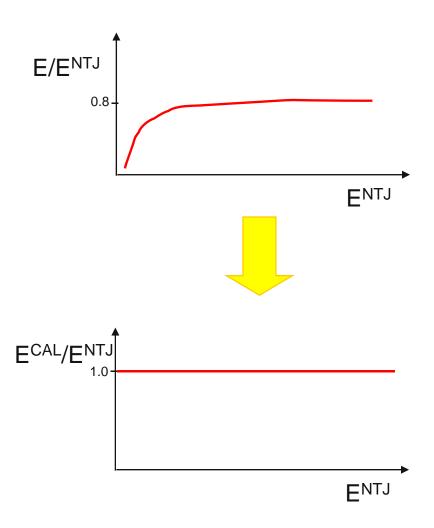
- Underlying event
- Out-of-cone energy

Part of these corrections are including on the calibration when using nearest-truth-jet

Numerical Inversion

ATL-COM-PHYS-2009-076

- Restores linearity within 1-2%
- Only depends on Jet E_T

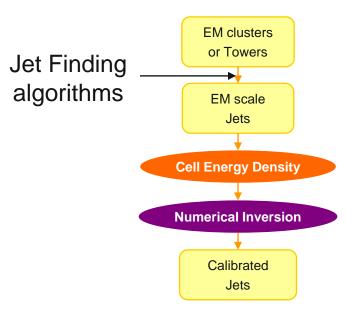

STEP 1

$$\left\langle \frac{E}{E^{NTJ}} \right\rangle = f\left(E_T^{NTJ}\right) = \sum_{i=0}^4 \frac{a_i}{\ln\left(E_T^{NTJ}\right)^i}$$
$$E \approx E^{INV} = E^{NTJ} f\left(E_T^{NTJ}\right)$$

STEP 2

$$\left\langle \frac{E}{E^{NTJ}} \right\rangle = g\left(E_T^{INV}\right) = \sum_{i=0}^4 \frac{a_i}{\ln\left(E_T^{INV}\right)^i}$$
$$E^{CAL} = E \frac{1}{g(E_T)}$$

 Correction calculated independently for each pseudorapidity η

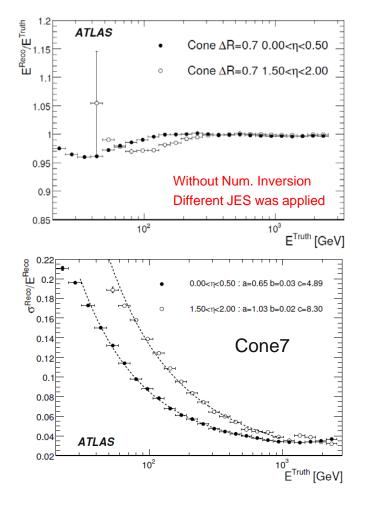

Global Calibration: H1 Cell energy density based calibration

ATL-COM-PHYS-2009-162

- Basis:
 - Electro-magnetic showers are more dense, energy concentrated in smaller region
 - Hadronic showers are broader, energy is spread in a larger volume

Mechanism:

 Apply a different weight depending on the energy density of the cell


Global Calibration: H1 Cell energy density based calibration

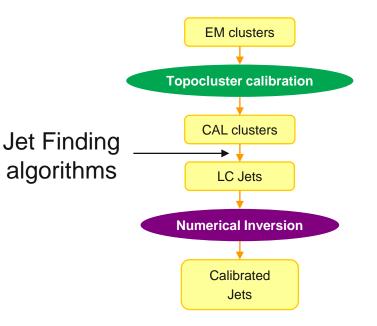
- Using MC di-jet event calculates the weights
- Cells are classified according to its e/v in 16 bins
- Weights parameterized as function of the e/v bins using a 4th degree polynomial function
- Calibrated energy is calculated as:

$$E^{CAL} = \sum_{cells} w_i \left(\ln \frac{e_i}{v_i} \right) e_i$$

Requiring that the weights w_i minimize the following function:

$$\chi^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\frac{E^{CAL}}{E^{NTJ}} - 1 \right)^{2} \right]$$

From CERN-OPEN-2008-020

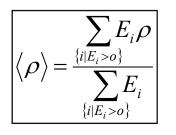

Local Hadron Calibration

- Calibrate topological clusters before they are part of the jet
- Classifies EM clusters depending on cluster parameters into:
 - Electro-magnetic: no weights
 - Hadronic: cell weighting

Try to separate $e^{\pm}\,,\gamma$ and π^{0} from π^{\pm}

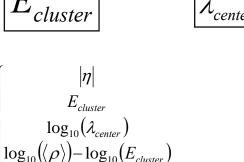
Classification based on MC predictions for π^0 and π^{\pm}

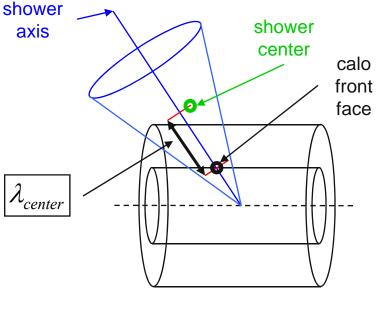
- Apply calibration to the cells of Hadronic Clusters
- Apply out-of-cluster corrections
- Apply dead material corrections



ATL-LARG-PUB-2009-001

Local Calibration : Cluster classification

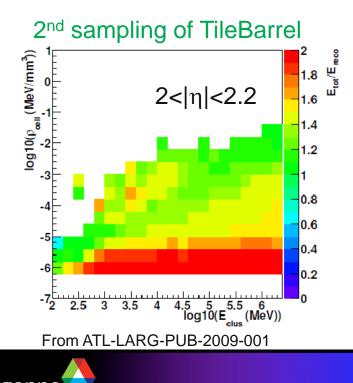

G4 simulation of neutral and charged single pions For each cluster calculate the so called cluster moments:

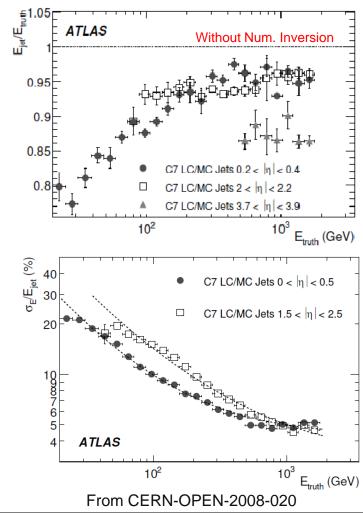


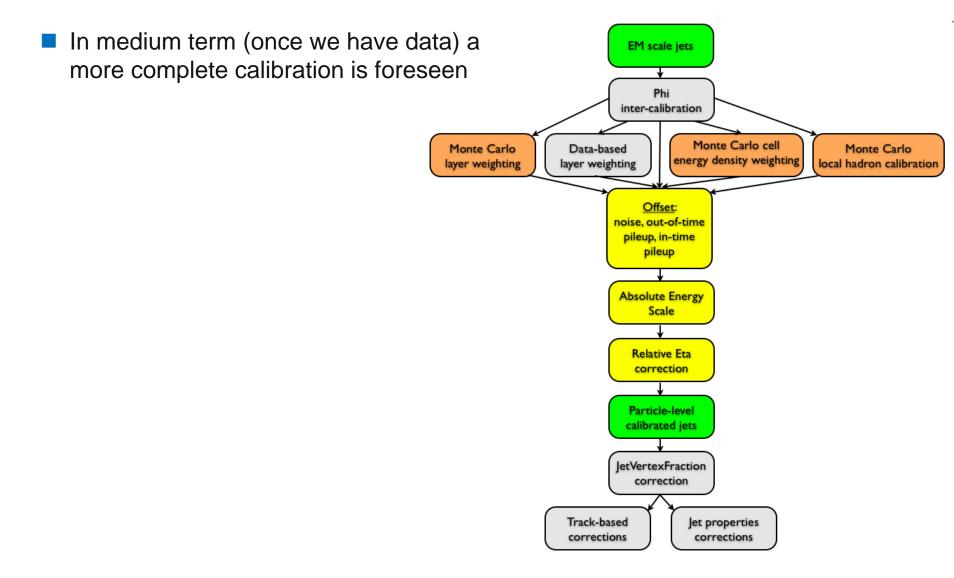
$$|\eta|$$

Classify clusters in bins of

Count the number of simulate neutral and charged pions in each bin of the grid and calculate :


$$w_i = \frac{n_i^{\pi^0}}{n_i^{\pi^0} + 2n_i^{\pi^{\pm}}}$$


A cluster is classified as EM if it falls in a bin with weight $w_i > 0.5$


Local Calibration: Apply weights to Hadronic Clusters

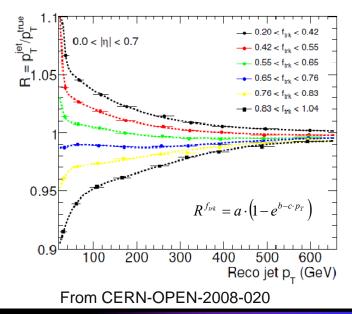
- Cells from clusters classified as Hadronic will be weighted under certain conditions
- Correction depends on:
 - Cell energy density
 - $|\eta|$ of the cell center
 - Cluster energy

Other corrections: MC and data-driven

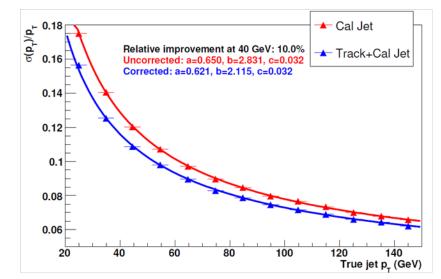
Other corrections: MC and data-driven

- Corrections
 - Dead material corrections : H1 and Local Hadron implement dead material corrections
 - Merged in the calibration algorithm is difficult to establish the real impact of these corrections
 - PileUp corrections
 - In time pile-up : Approaching similar methods to DØ and CDF
 - Out-of-time pile-up: This is a new issue at the LHC, the impact is uncertain
 - Track fraction and EM fraction corrections
 - Both important to validate the whole process
- Closure or are we doing everything properly?
 - Gamma+jets
 - MPF
 - Z+jets
 - Pt balance
 - ttbar

We are exploring also to use these channels for in-situ calibration procedures : see Jet calibration task force meetings



Improving resolution after JES: Monte Carlo based


Track energy fraction f_{trk}

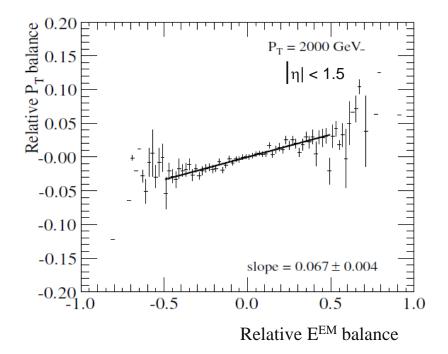
$$f_{trk} = \frac{\sum p_T^{trk}}{p_T^{jet}}$$

Improves jet energy resolutions without changing the JES

 $|\eta| < 0.7$ and $40 \text{GeV} < p_T < 200 \text{GeV}$

Check of Jet Calibration with data

Dijet balancing vs Relative EM fraction


- When calibration is correct we should expect perfect p_T balance independent of the distribution of the jet energy

Relative
$$p_T$$
 balance = $2\left(\frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}\right)$

Relative
$$E^{EM}$$
 balance = $\left[\frac{E^{EM}}{E^{tot}}\right]_1 - \left[\frac{E^{EM}}{E^{tot}}\right]_2$

 $p_{T,1}$ and $p_{T,2}$ are the 2 leading jets $\Delta \phi_{12} > 2.9$

$$p_{T,3} \le 0.10 \times \frac{p_{T,1} - p_{T,2}}{2}$$

How do you know which calibration has been applied?

- Data access keys of Jet Collections in ESD/AOD/DPD...:
 - Cone4H1TopoJets
 - Input to the jet finder: Topological clusters at EM scale
 - Jet Finder: Cone algorithms with R=0.4
 - **Calibration:** H1 → Global calibration, cell energy density + Numerical Inversion (or alternative JES correction)
 - Cone7H1TowerJets
 - Input to the jet finder: Projective towers at EM scale
 - Jet Finder: Cone algorithms with R=0.7
 - **Calibration:** H1 → Global calibration, cell energy density + Numerical Inversion (or alternative JES correction)
 - Kt4LCTopoJets
 - Input to jet finder: Calibrated to Hadronic scale topoclusters
 - Jet Finder: Kt algorithms with R=0.4
 - Calibration: Local calibration, hadronic topoclusters calibration + JES

Link to Documentation

- CSC book
 - CERN-OPEN-2008-020 : <u>http://arxiv.org/abs/0901.0512</u>
- Twiki JetEtMiss:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasProtected/JetEtMiss</u>
- Twiki Jet Reconstruction and Calibration Task Force:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasProtected/JetEtMiss</u>
- Global Calibration: Cell Energy Density
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasProtected/CellEnergyDensityCalibration</u>
 - ATL-COM-PHYS-2009-162: <u>http://cdsweb.cern.ch/record/1170925?In=en</u>
- Local Calibration: Topocluster calibration
 - ATL-LARG-PUB-2009-001: <u>http://cdsweb.cern.ch/record/1112035?ln=pl</u>
- Numerical Inversion
 - https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MCInitialPtAndEtaCorrection
 - ATL-COM-PHYS-2009-163: <u>http://cdsweb.cern.ch/record/1171280?In=en</u>

