# RåD issues for the LC-TPC design and their feedback to the Large Prototype

#### OUTLINE of TALK

Overview
Motivation, LC-TPC R&D Status
Next step: Build the Large Prototype (LP)
The LC TPC design issues
LC-TPC/LP Work Packages

18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

TPC R&D Groups

Europe **RWTH** Aachen CERN DESY U Hamburg U Freiburg U Karlsruhe UMM Krakow Lund MPI-Munich NIKHEF BINP Novosibirsk LAL Orsay IPN Orsay URostock CEA Saclay PNPI StPetersburg U Siegen

Asia America Tsinghua U Carleton U XCDC: Cornell/Purdue Hiroshima U Indiana U Minadamo SU-II LBNL Kinki U MIT U Osaka U Montreal Saga U U Victoria Tokyo UAT Yale U Tokyo Kogakuin U Tokyo KEK Tsukuba U Tsukuba

...Other groups interested?

NB: Started as subset of these groups working together reporting to the DESY PRC; it has recently been expanding so that the organization has to be updated...

18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning Other MIT (LCRD) Temple/Wayne State (UCLC)

#### HISTORY

1992: First discussions on detectors in Garmisch-Partenkirschen (LC92). Silicon? Gas?
1996-1997: TESLA Conceptual Design Report. Large wire TPC, 0.7Mchan.
1/2001: TESLA Technical Design Report. Micropattern (GEM, Micromegas) as a baseline, 1.5Mchan.
5/2001: Kick-off of Detector R&D
11/2001: DESY PRC proposal. for TPC R&D
(European & North American teams)
2002: UCLC/LCRD proposals
2004: After ITRP, WWS R&D panel

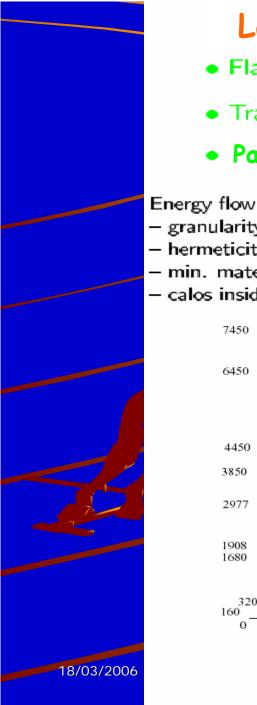
Europe Chris Damerell (Rutherford Lab. UK) Jean-Claude Brient (Ecole Polytechnique, France) Wolfgang Lohmann (DESY-Zeuthen, Germany)

#### Asia

HongJoo Kim (Korean National U.) Tohru Takeshita (Shinsu U., Japan) Yasuhiro Sugimoto (KEK, Japan)

North America Dan Peterson (Cornell U., USA) Ray Frey (U. of Oregon, USA) Harry Weerts (Fermilab, USA)

18/03/2006


Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

To design and build an ultra-high performance

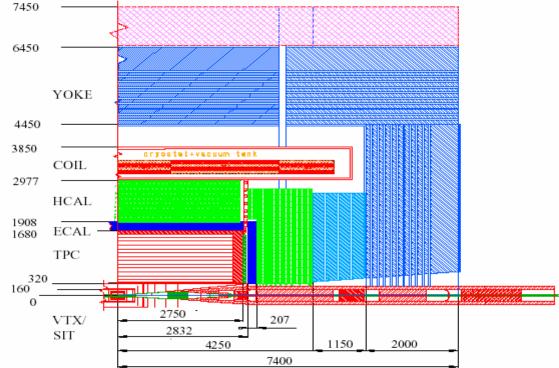
GOAL

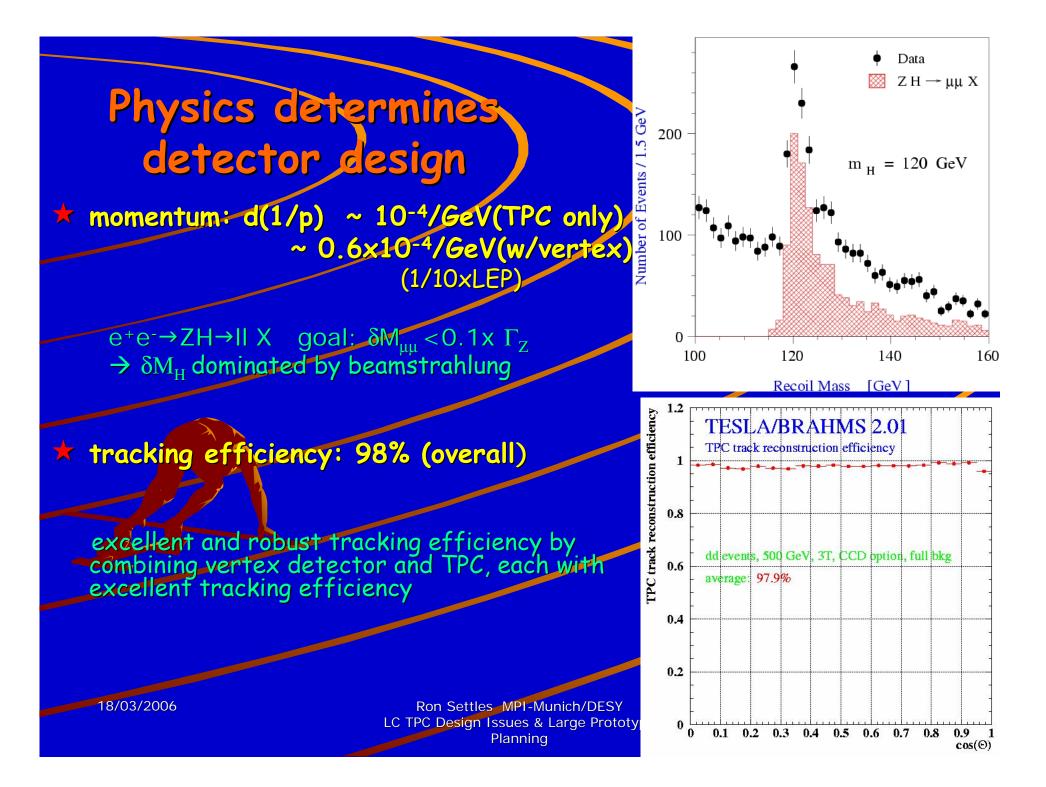
**Time Projection Chamber** 

...as central tracker for the ILC detector, where excellent vertex, momentum and jet-energy precision are required



#### Large Detector Concept example


- $\delta(\mathrm{IP}) \sim 5\mu\mathrm{m} \oplus \frac{10\mu\mathrm{m} \mathrm{GeV/c}}{\mathrm{p \sin^{3/2} \theta}}$ • Flavor tag
- Track momentum  $\delta(1/p_t) \sim 6 \times 10^{-5} \text{ GeV/c}^{-1}$
- Particle Flow


- granularity
- hermeticity
- min. material inside calos



(N.B. below are TDR dimensions, which have changed for latest LDC iteration)

 $\delta E/E \sim .30 / \sqrt{E}$ 





#### R&D Planning

#### 1) Demonstration phase

 Continue work with small prototypes on mapping out parameter space, understanding resolution, etc, to prove feasibility of an MPGD TPC. For CMOS/Si-based ideas this will include a basic proof-of-principle.

#### 2) Consolidation phase

Build and operate the LP, large prototype, (Ø ≥ 75cm, drift ≥ 100cm), with EUDET infrastructure as basis, to test manufacturing techniques for MPGD endplates, fieldcage and electronics. LP design is starting → building and testing will take another ~ 3 years.

#### 🛧 3) Design phase

 After phase 2, the decision as to which endplate technology to use for the LC TPC would be taken and final design started.



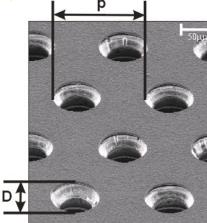
### "To-do" list for next few weeks/months

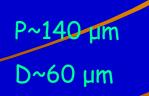
- Detector Outline Documents (LDC and GLD)
- LP-planning
- Detector Workshops (Instrumentation@Slac and TPC Applications@LBNL) 3-8April2006
  - Status report to the Desy PRC 11May2006 (written version due four weeks earlier) Organization of the LC TPC collaboration

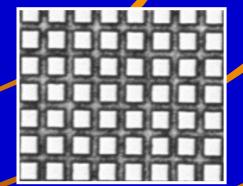


# What are we doing in Phase 1?




Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

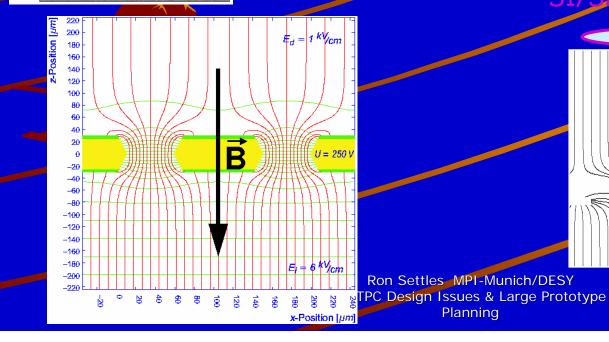

#### Gas-Amplification Systems: Wires & MRGDs->


Planning

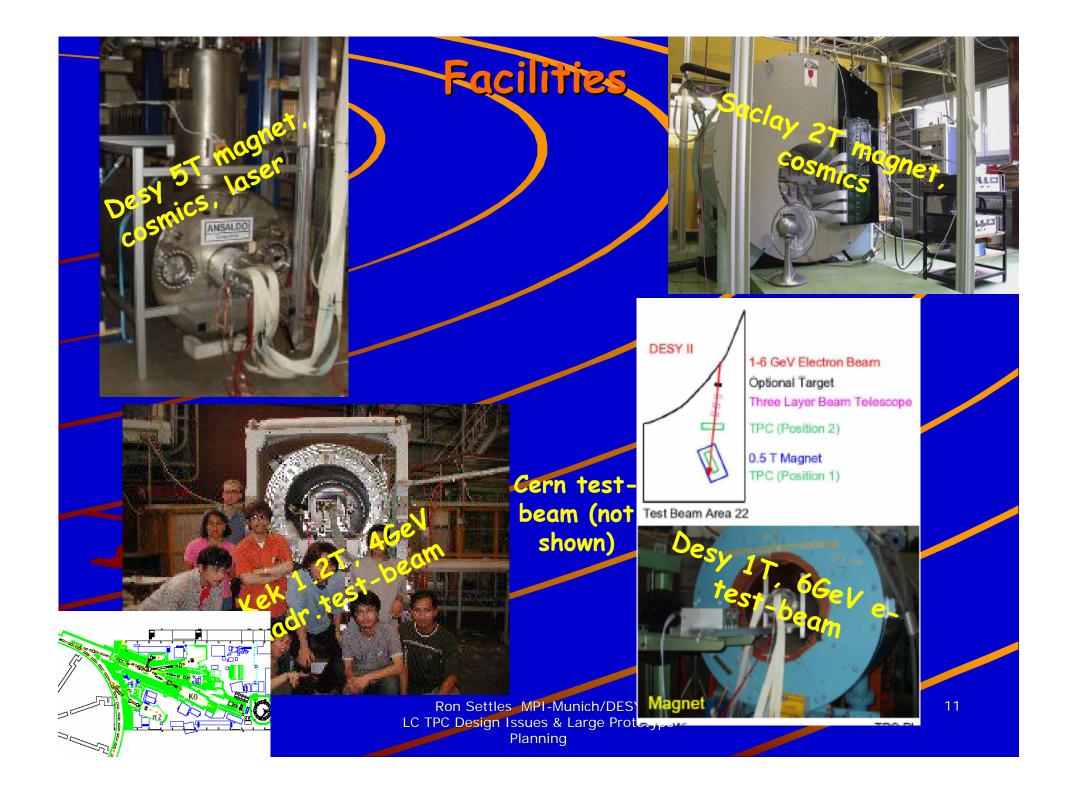
GEM: Two copper foils separated by kapton, multiplication takes place in holes, uses 2 or 3 stages

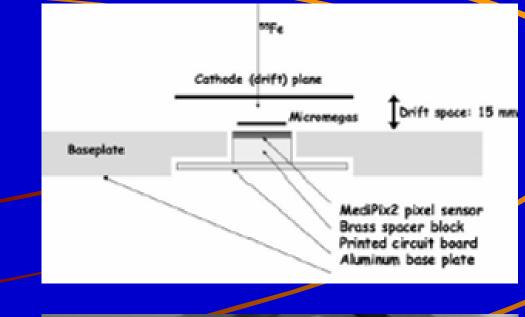
Micromegas: micromesh sustained y 50µm pillars, multiplication between anode and mesh, one stage

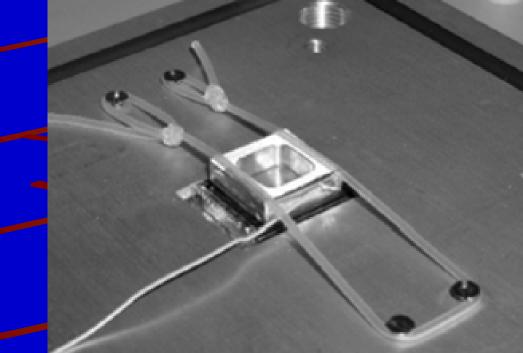








S1/S2~ Eamplif / Edrift


52


51











#### Pixel TPC Development

Nikhef on CMOS readout techniques joined by Saclay ~ 50 x 50  $\mu$ m^2 CMOS pixel matrix + Micromegas or Gem ~ preamp, discr, thr.daq, 14-bit ctr, time-stamp logic / pixel ~ huge granularity(digital TPC), diffusion limited, sensitive to indiv. clusters for right gas ~ 1<sup>st</sup> tests with Micromegas + MediPix2 chip

 $\rightarrow$  more later...

ch/DESY rge Prototype

Planning

### TPC R&D Summary

- Now 4 years of MPGD experience gathered
- Gas properties rather well understood
- "Diffusion-limited" resolution being understood
- Resistive foil charge-spreading demonstrated
- **CMOS RO demonstrated**
- Design work starting for the Large Prototype



# Phase a

• Basic Idea: LP should be a prototype for the LC TPC design and test as many of the issues as possible (like, e.g., TPC90 @ Aleph)

• The Eudet infrastructure gives us a starting basis for the LP work

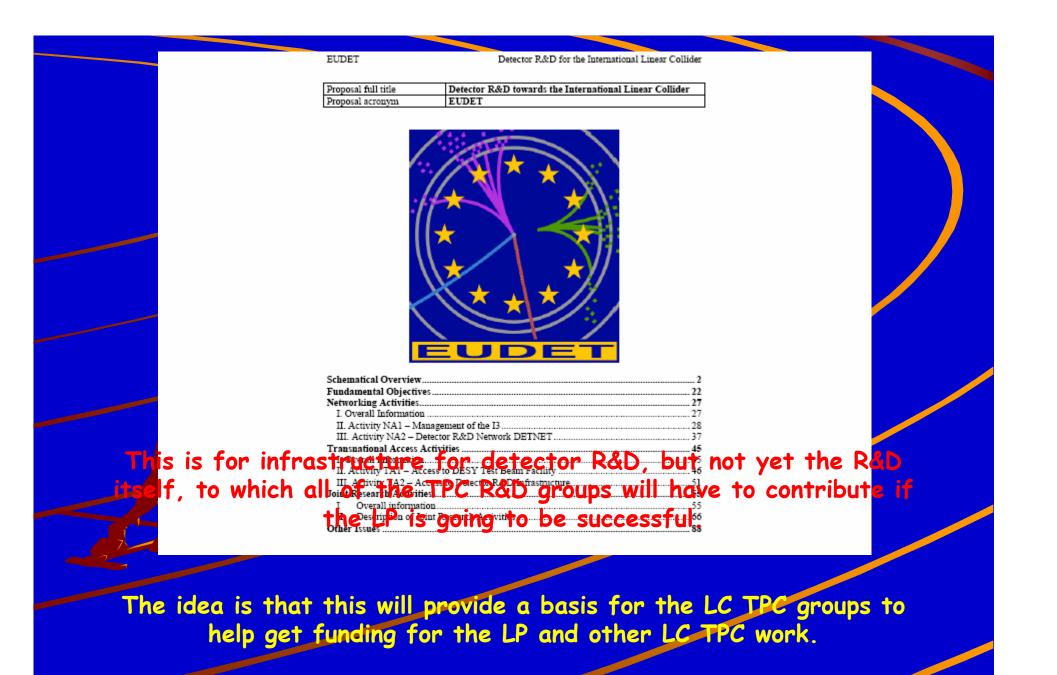
 There other LC TPC R&D issues in addition to the LP R&D which will be planned in conjunction with it



EUDET

Detector R&D for the International Linear Collider

| Proposal full title | Detector R&D towards the International Linear Collider |
|---------------------|--------------------------------------------------------|
| Proposal acronym    | EUDET                                                  |




| Schematical Overview                                      |     |  |  |
|-----------------------------------------------------------|-----|--|--|
|                                                           | 22  |  |  |
| Networking Activities                                     | 27  |  |  |
| I Overall Information                                     | 27  |  |  |
| II. Activity NA1 – Management of the I3                   |     |  |  |
| III. Activity NA2 – Detector R&D Network DETNET           |     |  |  |
| Transnational Access Activities                           |     |  |  |
| I. Overall information                                    |     |  |  |
| II. Activity TA1 – Access to DESY Test Beam Facility      |     |  |  |
| III. Activity TA2 - Access to Detector R&D Infrastructure |     |  |  |
| Joint Research Activities                                 |     |  |  |
| I Overall information                                     | .55 |  |  |
| II Description of Joint Research Activities               | 66  |  |  |
| Other Issues                                              |     |  |  |

I3 Proposal  $\rightarrow$  "Integrated Infrastructure Initiative"

7 M € from EU over 4 years approved to provide infrastructure for detector R&D ⇒ Kickoff meeting in Feb 06





# Work Packages for the LP and related work on the LC TPC

convener in white color

1) Workpackage MECHANICS Ron Settles

Groups expressing interest to date(others?

a) LP design (incl. endplate structure) Cornell, Desy, IPNOrsay, MPI, +contribution from Eudet **Dan Peterson** b) Fieldcage, laser, gas Aachen, Desy, St.Petersburg, **Ties Behnke** +contribution from Eudet c) GEM panels for endplate Aachen, Carleton, Cornell, Desy/HH, Akira Sugiyama Karlsruhe, Kek/XCDC, Novosibirsk, Victoria d) Micromegas panels for endplate Paul Colas Carleton, Cornell, Kek/XCDC, Saclay/Orsay Cern, Freiburg, Nikhef, Saclay, Kek/XCDC, e) Pixel panels for endplate nmermans +contribution from Eudet f) Resistive foil for endplate Carleton, Kek/XCDC, Saclay/Orsay Madhu Dixit

18/03/2006

#### -Work Packages for the LP and related work on the LC TPC

2) Workpackage ELECTRONICS Leif Joennson

Groups expressing interest to date(others?)

a)"Standard" RO/DAQ for LP: Leif Joennson + ? Aachen, Desy/HH, Cern, Lund, Rostock, Montreal, Tsinghua, +contribution from Eudet

b) CMOS RO electronics: Harry van der Graaf

c) Electr.,powerswitching,cooling for LC\_TPC:

Luciano Musa

Freiburg, Cern, Nikhef, Saclay, +contribution from Eudet

Aachen, Desy/HH, Cern, Lund, Rostock, Montreal, St.Petersburg, Tsinghua, +contribution from Eudet

18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

### Work Packages for the LP and related work on the LC TPC

3) Workpackage SOFTWARE Peter Wienemann <u>Groups expressing interest to date(others?)</u>

a) LP SW+simul./reconstr.framework: Peter Wienemann

b) TPC simulation, backgrounds Stefan Roth

c) Full detector simulation Keisuke Fujii Desy/HH,Cern,Freiburg, Carleton, Victoria, +contribution from Eudet

Aachen, Carleton, Cornell, Desy/HH, Kek/XCDC, St.Petersburg,Victoria

Desy/HH, Kek/XCDC, LBNL

18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

Work Packages for the LP-and related work on the LC TPC

4) Workpackage CALIBRATION Dean Karlen

Groups expressing interest to date(others?)

a) Fieldmap Lucie Linssen

b) Alignment
 Takeshi Matsuda
 c) Distortion correction
 Dean Karlen

d) Rad.hardness of material Anatoliy Krivchitch e) Gas/HV/Infrastructure Desy Postdoc +contribution from Eudet

Kek/XCDC

Victoria

St.Petersburg

Desy, Victoria, +contribution from Eudet



Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

# Work Packages for the LP and related work on the LC TPC - convener candidates

# Overall composition of conveners ~ 50:50 between ExtraEudet and Eudet affiliation

18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

What are the TPC design issues that have to be kept in mind when laying out the LP?

These are summarized in the TPC central-tracker DOD ('Detector Outline Document') for the LDC and GLD, submitted to the WWSOC at LCWSO6 in Bangalore



#### LC-TPG-Motivation/Goals

...to be tested@the LP where possible ...

 continuous 3-D tracking, easy pattern recognition throughout large volume, well suited for large magnetic field

- ~98-99% tracking efficiency in presence of backgrounds
- time stamping to 2 ns together with inner silicon layer
- minimum of X\_0 inside Ecal (<3% barrel, <30% endcaps)</li>
- σ\_pt ~ 100μm (rφ) and ~ 500μm (rz) @ 3or4T for right gas if diffusion limited
- 2-track resolution <2mm (rφ) and <5-10mm (rz)</li>
- dE/dx resolution <5% -> e/pi separation, for example
- easily maintainable if designed properly, in case of beam accidents, for example

• design for full precision/efficiency at 30 x estimated backgrounds Ron Settles\_MPI-Munich/DESY Two other LC-TPC features

#### 

 $\cdot \sim 50 \ \mu s \ drift time integrates over 150 BX$ 

→ design for very large granularity: ~ 2 - 20 × 10<sup>9</sup> voxels (two orders of magnitude more if CMOS pixel version)

~ end caps with large density of electronics (several million pads) are a fair amount of material
 > design for smallest amount: ~ 30%X<sub>0</sub> or less is feasible
 • design for full precision/efficiency at 30 x estimated backgrounds



## Excerpts from DODs for GLD and LDC used here as examples

### DESIGN ISSUES for the LC TPC

- Performance
- Endplate
- Electronics
- Chamber gas
- Fieldcage
  - Effect of non-uniform field
    - Calibration and alignment
    - **Backgrounds and robustness**



#### LC TPC Resolution expected/needed

subdetectors in reconstructing many of these channels are highly interconnected. For the TPC, the issues are performance, size, endplate, electronics, gas, alignment and robustness in backgrounds.

- 1.Resolution expected/needed
- The requirements for a TPC at the ILC are summarized in Table 1.

| Size                                     | For GLD, $\phi = 4.1$ m, L = 4.0m                                                                                                   |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Momentum resolution                      | $\delta(1/p_t) \sim 10^{-4}/\text{GeV/c}$ (TPC only; × 2/3 when IP included)                                                        |
| Solid angle coverage                     | Up to at least $\cos \theta \sim 0.98$                                                                                              |
| TPC material budget                      | $< 0.03X_0$ to outer fieldcage in r                                                                                                 |
|                                          | $< 0.30 X_0$ for readout endcaps in z                                                                                               |
| Number of pads                           | $> 10^6$ per endcap                                                                                                                 |
| Pad size/no.padrows                      | $\sim 1 \text{mm} \times 6 \text{mm} / > 200$                                                                                       |
| $\sigma_{\text{singlepoint}}$ in $r\phi$ | $\sim 120 \mu m$ (average over driftlength)                                                                                         |
| $\sigma_{\text{singlepoint}}$ in $rz$    | $\sim 0.5 \text{ mm}$                                                                                                               |
| 2-track resolution in $r\phi$            | < 2  mm                                                                                                                             |
| 2-track resolution in $rz$               | < 5  mm                                                                                                                             |
| dE/dx resolution                         | < 4.5 %                                                                                                                             |
| Performance robustness                   | > 95% tracking efficiency (TPC only), > 98% overall tracking                                                                        |
| Background robustness                    | Full precision/efficiency in backgrounds of 10-20% occupancy,<br>whereby simulations estimate $\sim 0.5\%$ for nominal backgrounds. |

Table 1: Typical list of performance requirements for a TPC at the ILC detector.

The main question to answer is: what should the resolution be for the overall tracking? This will define how many silicon layers are needed. Present folkslore says that corrall  $\delta(1/p_t) \sim 5 \times 10^{-7}/\text{GeV/c}$  will be sufficient, as defined mainly by the e<sup>+</sup>e<sup>-</sup>  $\rightarrow HZ \rightarrow H\ell\ell$ channel used for measuring the Higgs production rate. This resolution is achievable with inner-silicon tracking and a TPC performance given in Table 1. If for physics reasons, the overall tracking accuracy should be better, a larger TPC and/or more silicon layers should

#### LC TPG Endcaps

of the number of back-drifting ions. In addition a gating plane will be foreseen for inter-train gating in order to have a safety factor in case of unexpected backgrounds (see below). The two TPC endplates have a surface of about 10 m<sup>2</sup> of sensitive area each. The layout of the endplates, i.e. conceptual design, stiffness, division into sectors and dead space, has been started, for instance as shown in Fig. 1. In this example the question arises as to how

Figure 1: Ideas for the layout of the TPC endplates.

to make odd-shaped MPGDs if needed. In general, the readout pads, their size, geometry and connection to the electronics and the cooling of the electronics, are all highly correlated design tasks related to the endplates. As stated in Section 1.1, the material budget for the endcap and its effect on Ecal for the particle-flow measurement in the forward direction must be minimized. More details are covered in the next item.

3 Electronics

18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

Arrangements of detectors on the active area of the end cap (2/2) Trapezoidal shapes assembled in iris shape

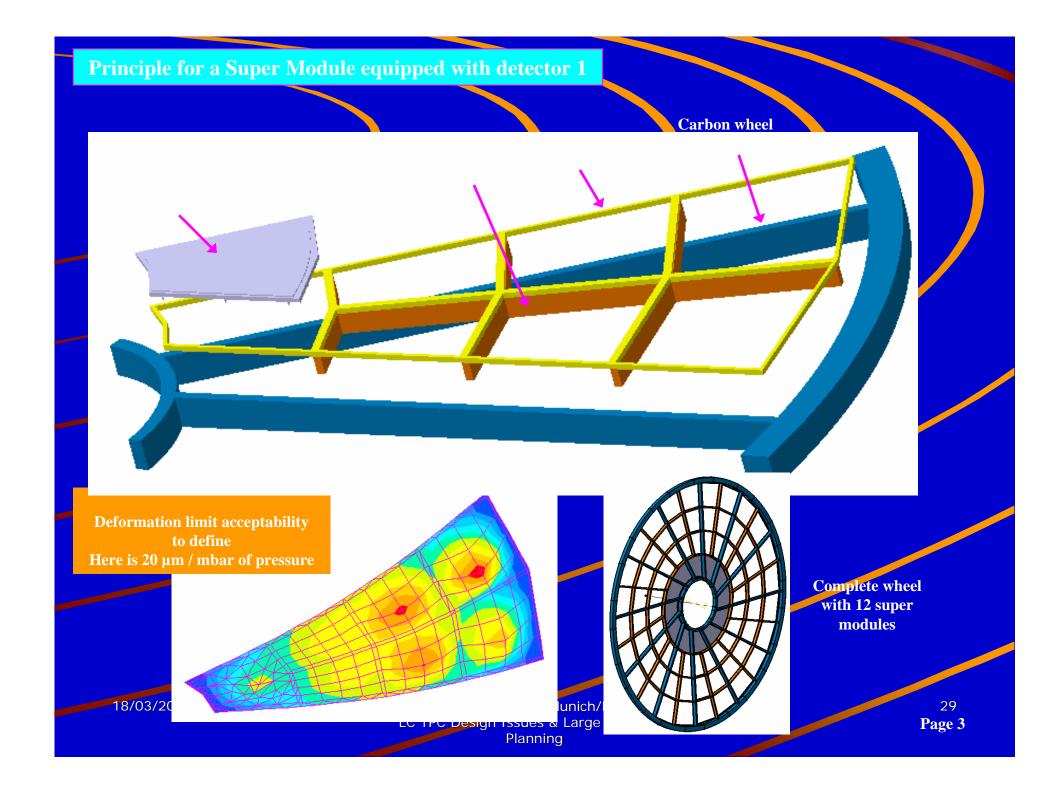
Annotations: Px is the type number of PADS boards or frames

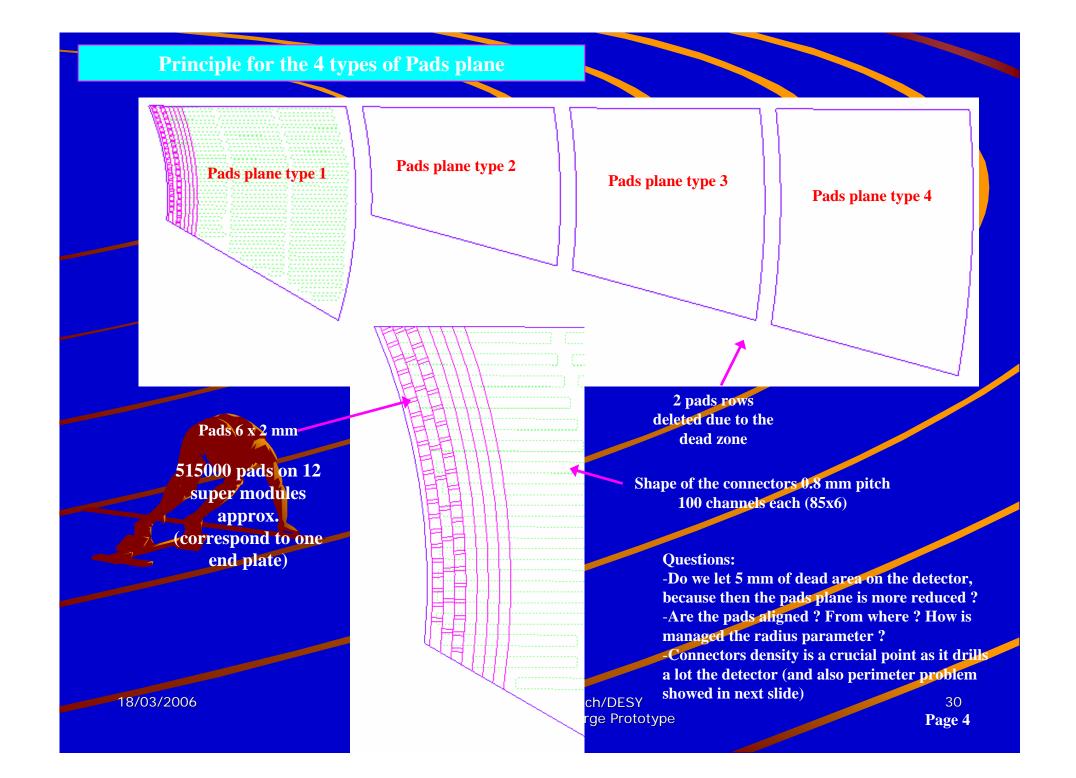
**12** sectors (**30**° each) as super modules are defined

On each, 7 modules are fixed he sizes of detectors are varying from 180 to 420 mm

Ø

P1 P2 P3 P4 P2 P3 P4 P2 P3 P4 P3 P4


these mannes are the same


These arrangement seems to be the best as only 4

different PADS are necessary Ron Settles MPI-Munich/DESY

18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning 28 **Page 2** 





### LC TPC Electronics

design tasks related to the endplates. As stated in Section 1.1, the material budget for the endcap and its effect on Ecal for the particle-flow measurement in the forward direction must be minimized. More details are covered in the next item.

#### 3.<u>Electronics</u>

For the readout electronics, one of the important issues is the density of pads that can be accomodated while guaranteeing a thin, coolable endplate. The options being studied are (a) a standard readout (meaning, as in previous TPCs) of several million pads or (b) a pixel readout a few hundred times that using CMOS techniques.

(a) Standard readout: Pad sizes under discussion are, for example, 2mm ×6mm (the TDR size[1]) or 1mm ×6mm which has found to be better as a result of our R&D experience (see below). A preliminary look at the FADC-type approach using 130nm technology indicates that even smaller sizes like 1mm ×1mm might be feasible (in which case charge-spreading would not be needed). In all of these cases there are between 1.5 and 20 million pads to be read out. An alternative to the FADC-type is the TDC approach (see [6][7]) in which time of arrival and charge per pulse (via time over threshold) is measured.

(b) CMOS readout: A new concept for the combined gas amplification and readout is under development. In this concept[6] the MPGD is produced in wafer post-processing technology on top of a CMOS pixel readout chip, thus forming a thin integrated device of an amplifying grid and a very high granularity endplate, with all necessary readout electronics incorporated. This concept offers the possibility of pad sizes small enough to observe individual single electrons formed in the gas and count the number of ionisation clusters per unit track length, instead of measuring the integrated charge collected. Initial tests using MicroMegas[8] and GEM foils[9] mounted on the Medipix2 chip provided 2-dimensional images of minimum ionizing track clusters. A modification of the Medipix2 chip (called Timepix) to measure also the drift time is under development[7]. Also a first working integrated grid has been produced[10].

18/03/2006

#### LC\_TPC\_Ghamber-g (a) gas choice

ionizing track clusters. A modification of the Medipix2 chip (called Timepix) to measure also the drift time is under development[7]. Also a first working integrated grid has been produced[10].

#### 4.Chamber gas

This issue involves (a) gas choice, (b) ion buildup and (c) ion feedback.

(a) The choice of the gas for a TPC is an important and central parameter. Gases investigated are variations of standard TPC gases, e.g., Ar(93%)CH<sub>4</sub>(5%)CO<sub>2</sub>(2%)-"TDR" gas, Ar(95%)CH<sub>4</sub>(5%)-"P5" gas,

#### Ar(90%),CH<sub>4</sub>(10%)-"P10", Ar (90%)CO<sub>2</sub>(10%), Ar (95%)Isobutane(5%) and Ar(97%)CF<sub>4</sub>(3%)

When choosing a gas a number of requirements have to be taken into account. The  $\sigma_{\text{singlepoint}}$  resolution achievable in  $r\phi$  is dominated by the transverse diffusion, which should be as small as possible. Simultaneously a sufficient number of primary electrons should be created for the point and dE/dx measurements, and the drift velocity at a drift field of a few  $\times 100$  V/cm should be about 5 cm/ $\mu$ s or more. The hydrogen component of hydrocarbons. which traditionally are used as quenchers in TPCs, have a high cross section for interaction with low energy background neutrons which will be crossing the TPC at the LC[1]. Thus the concentration of hydrogen in the quencher should be as low as possible, to minimize the number of background hits due to neutrons. An interesting alternative to the traditional gases is a Ar-CF<sub>4</sub> mixture. These mixtures give drift velocities around  $8 - 9 \text{ cm}/\mu s$  at drift field of 200 V/m, have no hydrocarbon content and have a reasonably low attachment coefficient at low electric fields. However at intermediate fields ( $\sim$ 5-10 kV/cm), as are present in the amplification region of a GEM or a MicroMegas the attachment increases drastically, thus limiting the use of this gas to systems where the intermediate field regions are of the order of a few microns. This is the case for MicroMegas, but its use has not been tested thoroughly for a GEM-based chamber. Whether CF4 is an appropriate quencher for the LC TPC is not vet known and is being tested as a part of our R&D.

18/03/2006

(b) Ion build-up at the surface of the gas-amplification plane and in the drift volume.

### -LC TPC-Chamber gas (b) Ion buildup

#### yet known and is being fested as a part of our RMD.

(b) Ion build-up at the surface of the gas-amplification plane and in the drift volume. -At the surface of the gas-amplification plane vis-a-vis the drift volume, during the bunch train of about 1 ms and 3000 bunch crossings, there will be few-mm thick layer of positive ions built up due to the incoming charge, subsequent gas amplification and ion backdrift. An important property of MPGDs is that they suppress naturally the backdrift of ions produced in the amplification stage. This layer of ions will be reach a density of some fC/cm<sup>3</sup> depending on the background conditions during operation. Intuitively its effect on the coordinate measurement should be small since the drifting electrons incoming to the anode only experience this environment during the last few mm of drift. In any case, the TPC is planning to run with the lowest possible gas gain, meaning a few ×10<sup>3</sup>, in order to minimize this effect.

–In the drift volume, a positive ion density due to the primary ionization will be built up during about 1s (the time it takes for an ion to drift the full length of the TPC), will be higher near the cathode and will be of order fC/cm<sup>3</sup> at nominal occupancy (~ 0.5%). The tolerance on the charge density will be established by our R&D programme, but a few × fC/cm<sup>3</sup> is orders of magnitude below this limit.

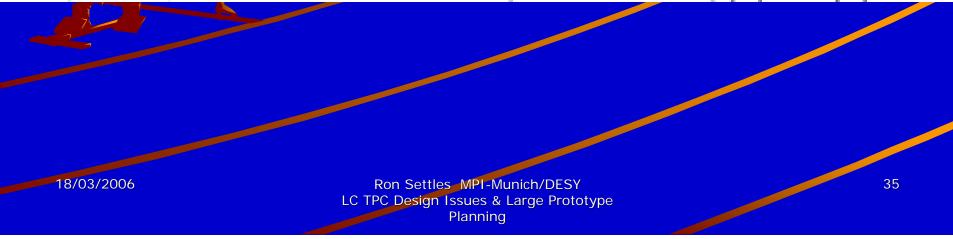
18/03/2006

Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

#### -LC\_TPC-Ghamber-gas (c) ion backdrift/gating

(c) Ion backdrift and gating.

In order to minimize the impact of ion feeding back into the drift volume, a requiredsuppression of about 1/gasgain has been used as a rule-of-thumb, since then the total charge introduced into the drift volume is about the same as the charge produced in the primary ionization. Not only have these levels of backdrift suppression not been achieved during our R&D programme, but also this rule-of-thumb is misleading. Lower backdrift levels will be needed since these ions would drift as few-mm thick sheets through the sensitive region during subsequent bunch trains. Even if a suppression of 1/gasgain is achieved, the overall charge within the sheets will be the same as in the drift volume so that the density of charge within a sheet will be one to two orders of magnitude greater than the primary ionization in the total drift volume. How these sheets would affect the track reconstruction has to be simulated, but


to be on the safe side a backdrift level of << 1/gasgain will be desirable. Therefore, since the backdrift can be completely eliminated by a gating plane, a gate should be foreseen, to guarantee a stable and robust chamber operation. The added amount of material for a gating plane is small,  $< 0.5\%X_0$  average thickness. The gate will be closed between bunch trains and remain open throughout one full train. This will obviate the need to make corrections to the data for such an "ion-sheets effect" which could be necessary without inter-train gating.

18/03/2006

### LC TPG Fieldcage

#### 5. The fieldcage

The design of the fieldcage involves the geometry of the potential rings, the resistor chains, the central HV-membrane, the gas container and a laser system. These have to be laid out for sustaining at least 100kV at the HV-membrane and a minimum of material. Important aspects for the gas system are purity, circulation, flow rate and overpressure. The final configuration depends on the gas mixture, which is discussed above, and the operating voltage which must also take into account the stability under operating conditions due to fluctuations in temperature and atmospheric pressure. For alignment purposes (see next two items) a laser system will be foreseen, either integrated in the fieldcage[11] or not[12].



### LC TRC Non-uniform fields

6.Effect of non-uniform field

–Non-uniformity of the magnetic field of the solenoid will be by design within the tolerance of  $\int_{\frac{1}{2} \frac{B_r}{B_s}} dz < 2 \text{mm}$  used for previous TPCs. This homogeneity is achieved by corrector windings at the ends of the solenoid. At the ILC, larger gradients could arise from the fields of the DID (Detector Integrated Dipole) or anti-DID, which are options for handling the beams inside the detector in case a crossing-angle is chosen. This issue was studied intensively at the 2005 Snowmass workshop[13], where it was shown that the TPC performance will not be degraded if the B-field is mapped to  $10^{-4}$  relative accuracy. The field-mapping gear and procedures should be able to accomplish this goal. The B-field should also be monitored since the DID or corrector windings may differ from the configurations mapped; for this purpose the option a matrix of Hallplates and NMR probles mounted on the outer surface of the fieldcage is being studied.

–Non-unforcing of the electric field can arise from the field cage, backdrift ions and primary ions. For the first, the field cage design, the non-uniformities can be minimized using the experience gained in past TPCs. For the second, as explained above, the backdrift-ions can be minimized at the MPGD plane using low gasgain and eliminated entirely in the drift volume using gating. The effect due to the third, the primary ions, is due to backgrounds and is irreducible. As discussed above, the maximum allowable electrostatic charge density has to be established, but studies by the STAR experiment[15] indicate that up to 1 pC/cm<sup>3</sup> can be tolerated, whereas at nominal occupancy ( $\sim 0.5\%$ ) it will be of order fC/cm<sup>3</sup>. This will be revisited by the LC TPC collaboration by simulation and by the R&D programme below.

7.Calibration and alignment



### LC TPC Calibration/alignment

#### below.

#### 7.Calibration and alignment

The tools for solving this issue are Z peak running, the laser system, the B field map, a matrix of Hallplates/NMR probes and the Si-layers outside the TPC. In general about 10/pb of data at the Z peak will be sufficient during commissioning to master this task, and typically 1/pb during the year may be needed depending on the backgound and energy of the ILC machine. A laser calibration system will be foreseen which can be used to understand both magnetic and electrostatic effects, while a matrix of Hallplates/NMR probes may supplement the B-field map. The z coordinates determined by the Si-layers inside the inner field cage of the TPC were used in Aleph[16] for drift velocity and alignment measurements, were found to be extremely effective and will thus be included in the LC TPC planning. The overall

tolerance is that systematics have to be corrected to  $30\mu$ m throughout the chamber volume in order to guarantee the TPC performance, and this level has already been demonstrated by the Aleph TPC[13].

8.Backgrounds and robustness



#### LC TPC Backgrounds

#### 8.Backgrounds and robustness

The issues have are the primary-ion charge buildup (discussed above) and the trackfinding efficiency in the presence of backgrounds, which will be discussed here. There are backgrounds from the accelerator, from cosmics or other sources and from physics events. The main source is the accelerator, which gives rise to gammas, neutrons and charged particles being deposited in the TPC at each bunch crossing[17]. Preliminary simulations of these under nominal conditions[1] indicate an occupancy of the TPC of less than about 0.5%. This level would be of no consequence for the LC TPC performance, but caution is in order here. The experience at LEP was that the backgrounds were much higher than expected at the beginning of the running (year 1990), but after the simulation programs were improved and the accelerator better understood, they were much reduced, even negligible at the end (year 2000). Since such simulations have to be tuned to the accelerator once it is commissioned, the backgrounds at the beginning could be much larger, so the the LC TPC should be prepared for much more occupancy, up to 10 or 20%. The TPC performance at these occupancy levels will hardly deteriorate due to its continuous, high 3D-granularity tracking which is still inherently simple, robust and very efficient with the remaining 80 to 90% of the chamber.

18/03/2006

#### TRC milestones

 2006 Continue LC-TPC R&D via small-prototype tests, organize work for Large Prototype
 2007-2009 Test Large Prototype, decide technology
 2010 Final design of LC TPC
 2014 Four years construction
 2015 Commission/Install TPC in LC Detector



# No conclusion,

## -work continuing...



Ron Settles MPI-Munich/DESY LC TPC Design Issues & Large Prototype Planning

# Backup slides...



#### Performance/Simulation Momentum precision needed for overall tracking?

- Momentum precision needed for the TPC?
  - Arguments for dE/dx, V° detection
- Requirements for
  - 2-track resolution (in rφ and z)?
  - + track-gamma separation (in rφ and z)?
- Tolerance on the maximum endplate thickness?
  - **Tracking configuration** 
    - Calorimeter diameter
    - TPC
      - Other tracking detectors
  - TPC outer diameter
  - **TPC** inner diameter
- TPC length
- Required B-mapping accuracy in case of non-uniform Bfield?

#### Design

- Gas-Amplification technology  $\rightarrow$  input from R&D projects
- Chamber gas candidates: crucial decision! Electronics design: LP WP
  - Zeroth-order "conventional=RO" design
  - Is there an optimum pad size for momentum, dE/dx resolution and electronics packaging?
    - Silicon\_RO: proof-of-principle
  - Endplate design LP\_WP
    - Mechanics
    - Minimize thickness
    - Cooling
  - Field cage design LP WP

18/03/2006

### Backgrounds/alignment/distortion-correction

- Revisit expected backgrounds DOD
- Maximum positive-ion buildup tolerable?
- Maximum occupancy tolerable?
- Effect of positive-ion backdrift: gating plane?
  - Tools for correcting space charge in presence of bad

backgrounds? -> DOD (from Snowmass study)

