Study of charged and neutral Higgs boson decays at CLIC

Elias Coniavitis and Arnaud Ferrari

Department of Nuclear and Particle Physics Uppsala University, Sweden

LCWS 2006, Bangalore, India, 9-13 March 2006

Arnaud Ferrari Study of charged and neutral Higgs boson decays at CLIC

A (10) × A (10) × A (10)

Introduction

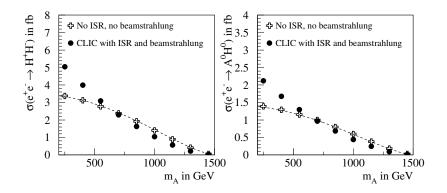
- In the Standard Model, only 1 doublet of Higgs scalars is responsible for the electroweak symmetry breaking. As a result, there is only one neutral Higgs boson h⁰.
- Other theoretical models, in particular with Supersymmetry (MSSM), predict the existence of 2 complex Higgs doublets \rightarrow 5 physical states: H^+ , H^- , h^0 , H^0 and A^0 .
- At tree level, the MSSM Higgs sector is fully determined by two independent parameters only: m_A and tan β .
- By comparing the signal rates of H[±] → tb and H[±] → τν, or of H⁰/A⁰ → tt and H⁰/A⁰ → bb, one can derive tan β, whether or not the charged and neutral Higgs bosons also decay into non-SM particles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Monte-Carlo simulation studies

- The charged and neutral Higgs boson decay widths and branching ratios are computed with HDECAY.
- Signal events are generated with PYTHIA and the CLIC beam-beam effects (beamstrahlung, ISR, γγ → hadrons) are included.
- The physics background events are generated with MadEvent/MadGraph. A home-made subroutine was written to include the CLIC beam-beam effects and PYTHIA is used for the fragmentation of the quarks.
- Fast detector simulation and event reconstruction with SIMDET, 70% tagging efficiency for *b* and τ jets.

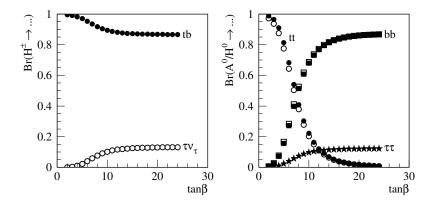
イロト イヨト イヨト ・


CLIC beam parameters at 3 TeV

Center-of-mass energy	3	TeV
Main linac RF frequency	30	GHz
Accelerating gradient	150	MV/m
Linac and site lengths	28/33.2	km
Linac repetition rate	150	Hz
No. of bunches per pulse	220	
No. of particles per bunch	2.56	10 ⁹
Bunch spacing	0.267	ns
Primary beam power	20.4	MW
Total site AC power	418	MW
Wall plug to main beam efficiency	12.5	%
Horizontal emittance $(\beta\gamma)\epsilon_x$	0.660	mm.mrad
Vertical emittance $(\beta\gamma)\epsilon_y$	0.001	mm.mrad
Horizontal beam size σ_x	60	nm
Vertical beam size σ_y	0.7	nm
Bunch length σ_z	30.8	μ m
Peak luminosity	6.5	10 ³⁴ cm ⁻² s ⁻¹
Luminosity within 1% of Ecm	3.3	10 ³⁴ cm ⁻² s ⁻¹
Photons per e^+/e^-	1.1	
Beamstrahlung loss	16.0	%
Coherent pairs per bunch crossing	5	10 ⁷
$\gamma\gamma ightarrow$ hadrons per bunch crossing	0.73	

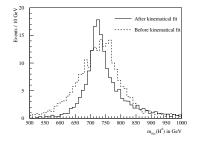
Arnaud Ferrari Study of charged and neutral Higgs boson decays at CLIC

イロト イヨト イヨト イヨト


Charged and neutral Higgs boson pair production

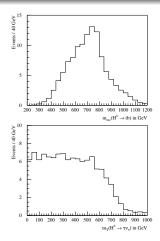
In the following, we use an integrated luminosity of 3000 fb^{-1} .

Arnaud Ferrari Study of charged and neutral Higgs boson decays at CLIC


Charged and neutral Higgs boson decays

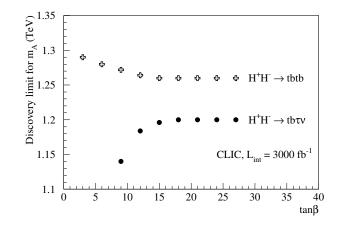
In the following, we assume that the charged and neutral Higgs bosons only decay into SM particles.

 $e^+e^- \rightarrow H^+H^- \rightarrow tbtb$


- Events with no isolated lepton, at least 8 jets including 4 b-jets,
- Assignment of the non-b jets to 2 W bosons, reconstruction of top quarks and of the charged Higgs bosons,
- Mass constrained kinematical fit to improve the reconstruction.

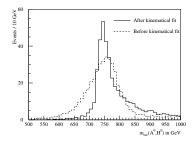
A cut on m_{bb} is then applied to further reduce the $e^+e^- \rightarrow tbtb$ background.

 $e^+e^- \rightarrow H^+H^- \rightarrow tb\tau\nu$


- Events with no isolated lepton, at least 5 jets including 2 b-jets and 1 τ-jet,
- Assignment of 2 non-b jets to a W boson, reconstruction of the top quark and of H[±] → tb,
- Transverse mass reconstruction for $H^{\pm} \rightarrow \tau \nu$.

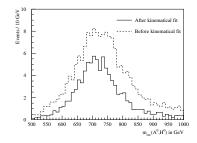
・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

Cuts on the missing P_T , on the transverse angle between the charged Higgs boson candidates and on the transverse mass are applied to further reduce the $e^+e^- \rightarrow tb\tau\nu$ background.


Charged Higgs boson discovery potential at CLIC

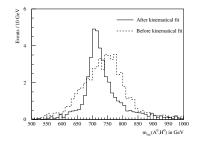
For a discovery, one requires $S \ge 10$ and $S/\sqrt{B} \ge 5$.

This decay chain has the largest branching ratio at large tan β .

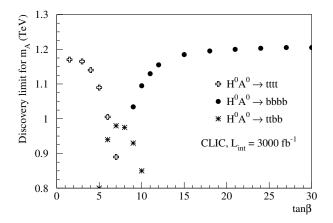

- Events with no isolated lepton and 4 b-jets,
- Assignment of two bb pairs to the neutral Higgs bosons,
- Mass constrained kinematical fit to improve the reconstruction.

$e^+e^- \rightarrow A^0 H^0 \rightarrow tttt$

This decay chain has the largest branching ratio at small $\tan \beta$.


- Events with no isolated lepton, at least 12 jets, including 4 b-jets,
- Assignment of 8 non-b jets to 4 W bosons, reconstruction of 4 top quarks and assignment of *tt* pairs to the neutral Higgs bosons,
- Mass constrained kinematical fit to improve the reconstruction...
 Poor convergence efficiency, due to the complex event topology.

$e^+e^- ightarrow A^0 H^0 ightarrow ttbb$


This decay chain has a significant branching ratio in the intermediate tan β region (around 7).

- Events with no isolated lepton, at least 8 jets including 4 b-jets,
- Assignment of the non-b jets to 2 W bosons, reconstruction of top quarks and of the neutral Higgs bosons (*tt* and *bb*),
- Mass constrained kinematical fit to improve the reconstruction.

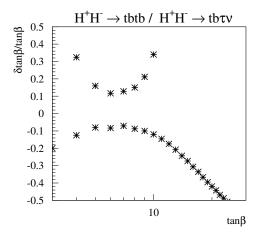
A cut on $|\Delta m_{tb}|$ can be applied to reduce the contribution of $e^+e^- \rightarrow H^+H^- \rightarrow tbtb$ events.

Neutral Higgs boson discovery potential at CLIC

The discovery limit is set by the *bbbb* and *tttt* channels, except in the intermediate $\tan \beta$ region, where the *tbtb* cascade decay can also be observed.

$\tan \beta$ determination with charged Higgs bosons (1)

$$\frac{\Gamma(H^{\pm} \to tb)}{\Gamma(H^{\pm} \to \tau\nu)} \simeq \frac{3\Delta_{\text{QCD}}}{m_{\tau}^{2}} \times \left[\bar{m}_{t}^{2}(m_{H^{\pm}})\cot^{4}\beta + \bar{m}_{b}^{2}(m_{H^{\pm}})\right]$$
$$R = \frac{N_{tbtb}}{N_{tb\tau\nu}} = \frac{\epsilon_{tbtb}}{2\epsilon_{tb\tau\nu}} \times \frac{\Gamma(H^{\pm} \to tb)}{\Gamma(H^{\pm} \to \tau\nu)}$$


- One can determine tan β from the ratio *R* between the signal rates for $H^+H^- \rightarrow tbtb$ and $H^+H^- \rightarrow tb\tau\nu$.
- The result does not depend on possible other H^{\pm} decays.
- The (statistical) error on $\tan \beta$ is directly derived from:

$$\frac{\Delta R}{R} = \sqrt{\left[\frac{\Delta(\sigma \times Br)}{\sigma \times Br}\right]_{tbtb}^{2} + \left[\frac{\Delta(\sigma \times Br)}{\sigma \times Br}\right]_{tb\tau\nu}^{2}}$$

$\tan \beta$ determination with charged Higgs bosons (2)

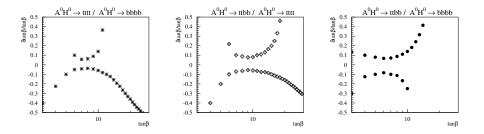
The statistical error on tan β is smallest in the 4-10 region.

- At low tan β , the signal rate for $H^+H^- \rightarrow tb\tau\nu$ is very small.
- At large $\tan \beta$, the ratio *R* is constant.

$\tan \beta$ determination with neutral Higgs bosons (1)

 $\frac{\Gamma(H^0/A^0 \to tt)}{\Gamma(H^0/A^0 \to bb)}$ varies with $\tan \beta$ similarly to $\frac{\Gamma(H^{\pm} \to tb)}{\Gamma(H^{\pm} \to \tau\nu)}$.

• One can determine $\tan \beta$ from three ratios:


- R_{bbbb}^{tttt} between $H^0A^0 \rightarrow tttt$ and $H^0A^0 \rightarrow bbbb$,
- R_{bbbb}^{ttbb} between $H^0 A^0 \rightarrow ttbb$ and $H^0 A^0 \rightarrow bbbb$,
- R_{ttbb}^{tttt} between $H^0A^0 \rightarrow tttt$ and $H^0A^0 \rightarrow ttbb$.
- The results do not depend on other H^0/A^0 decays.
- The (statistical) error on $\tan \beta$ is directly derived from:

$$\frac{\Delta R_2^1}{R_2^1} = \sqrt{\left[\frac{\Delta(\sigma \times Br)}{\sigma \times Br}\right]_{\text{Signal 1}}^2 + \left[\frac{\Delta(\sigma \times Br)}{\sigma \times Br}\right]_{\text{Signal 2}}^2}$$

ヘロト 人間 とくほとくほとう

$\tan \beta$ determination with neutral Higgs bosons (2)

The statistical errors on tan β are smallest in the 4-10 region.

Conclusion and outlooks

- New simulation studies of the charged and neutral Higgs boson decays show that CLIC will be sensitive to these new particles over the whole tan β spectrum, for masses beyond 1 TeV.
- At CLIC, tan β can be measured with a good accuracy in the intermediate region (not accessible at LHC) through a comparison of the signal rates for various H[±] and H⁰/A⁰ decays.
- A study of H⁰A⁰ → ttττ/bbττ and a combined analysis of the charged and neutral Higgs sectors will be performed next...

ヘロト ヘヨト ヘヨト ヘヨト