

- Reaching high luminosities
- Laser-wire principle
- The PETRA laser-wire
- The ATF laser-wire
- Laser R&D

Reaching a high luminosity

- The luminosity goals set for the ILC require very high beam densities => very small beams
- Device used in the past to tune accelerators beam size are too fragile or too imprecise to be used with the ILC's high power beams
- R&D is ongoing to prove that a laser swiped across the accelerator beam can provide the necessary resolution => Laser-wire
- Idea pioneered at SLC and at the ATF DR

Laser-wire principle:

Compton interactions

- Laser pulses are sent across the electrons' path
- Compton photons are produced
- By varying the vertical position at which the laser pulse interacts with the electrons one can probe different parts of the bunch and thus measure the beam size and its profile

- Need laser pulses of ~10MW at the ILC repetition rate (~3000 bunch/train@5Hz) => that's a lot of power!
- Need to transport the laser pulses from their source to the laser-wire IP without distorting them => this could be 100's of meters.
- Need to change the laser pulses vertical offset between two trains => that is less than 300ns.
- Need to focus the laser pulses to a size smaller than the electron beam => In the BDS that is less than 1 micrometer!
- Need to extract the photons from the beam-line and measure their energy accurately
- Prototypes are being tested at PETRA and the ATF extraction line.

The PETRA laser-wire

- Collaboration
 DESY/CERN/UK/SLAC
- Working prototype
- Identified several issues:
 - Laser reliability
 - Photons extraction issues
 - DAQ
- Laser upgraded (EuroTeV)
- 2nd dimension scan. added this year

The ATF extraction line

laser-wire

- Collaboration KEK/UK/SLAC
- Goal: achieve a resolution of
 ~1 micrometer
- Infrastructures installed last September
- Trying to have the two beams aligned vertically
 => need more diagnostic tools
- First scan expected by the end of the year
 Nicolas Delerue, University of Oxford

Lessons from

the current laser-wire R&D

- Focusing the laser light below 1 micrometer will be difficult => need to use UV pulses?
- Time & spatial alignment of the laser with the electrons is difficult
- The laser delivery line may affect the quality of the laser pulse
- Laser quality & reliability is critical... (see next talk)