Tracking and Vertexing Summary

(Hwanbae Park)

A. Sugiyama (Saga Univ.)

Vertex detectors Fridav. March 10 Development of DEPFETs for the Vertex Detector (Ladislav Andricek) CMOS Monolithic Pixel R&D at LBNL (Devis Contarato) Monolithic CMOS Pixel Detectors for ILC Vertex Detection (James Brau) Development of CMOS sensors adapted to the vertex detector requirements (Marc Winter) Saturday, March 11 LCFI Status Report: Sensors for ILC Vertex Detector (Konstantin Stefanov) Investigation in the Properties of Charge Traps Created in CCD by Neutron and Electron Irradiation (Nikolai Sinev) Vertex Performance Study with a Realistic Pattern Recognition Algorithm (Alexei Raspereza) (Andre SOPCZAK) LCFI Vertex Detector Design Studies ______ Solid-state tracking _____ Sunday, March 12 SiD Vertex Detector Mechanical Design (Bill Cooper) LCFI Status Report: Physics and Mechanics for ILC Vertex Detector (Steve D. Worm) Status on the development of FE and readout electronics for Large (Jean-Francois Genat) Silicon Trackers SiLC R&D present status and perspectives (Aurore Savoy-Navarro)

Silicon Strip R&D Status in Korea

5 sessions
10 talks for Vertex
3 talks for Si Tracker
8 talks for TPC

Gaseous tracking

==========

Sunday, March 12

Large-Area Micromegas TPC R&D (Michael T. Ronan)
Comparison between data and simulation for MT3 (Akira Sugiyama)
Studies on the Drift Properties and Spatial Resolution Using a
Micromegas-Equipped TPC (Rosario L. Reserva)
A beam test of prototype TPCs using micro-pattern gas detectors at
KEK (Makoto Kobayashi)

Micromegas- and GEM-TPC resolution studies with charge dispersion in a magnetic field in a test beam. (Madhu Dixit)

Monday, March 13
ILC TPC R&D studies at DESY/U. Hamburg (Katsumasa Ikematsu)
Developments for a digital TPC: the SiTPC project (Paul Colas)
TPC R&D Plans for the Large Prototype (Ron Settles)

Brief Introduction of Vetex to "non-expert(myself)"

required point resolution ~ a few um low material < 0.5% X0
Occupancy < 1%

Key issue of R&D

Bkg. hits exceed "occupancy limit" after ~3000BX(1 train) w/ standard 20um pixel

- Solution: 1) read data before Occ. exceed limit (20 times/train) can we read all data within 50usec? Column parallel CCD, CMOS, DEPFET
 - 2) store data and reset sensor(20 depth in storage)
 can we store data? read all data (within 199msec). ISIS, Macro/Micro
 make pixel size small(20 times smaller in area; 5um pixel) can we make? FPCCD

0.95 ms

Multiple collisions

"Proof of Principle"

Beam bunch structure at ILC 0.2 s

with reasonably low power dissipation, high S/N, low material (thinning), tough rad. hardness away from RF pick-up

many more things
mechanical design, support, cooling
Optimization under physics benchmark
Software development

CMOS Monolithic Pixels R&D at LBNL

Devis Contarato

- Developed and characterized first CMOS pixel test structure in 0.35 μm
 OPTO AMS, with different pixel pitches (10, 20, 40 μm)
- Availability of facilities on-site: electron microscopy @ NCEM, beam-test with 1.5 GeV e⁻ at Advanced Light Source, 30 MeV proton irradiations at 88-inch Cyclotron
- Synergy with other on-going activities on CMOS pixels at LBNL

Beam Stop Image with 200 keV e-

Beam-test at the Advanced Light Source

 Backthinning studies on MIMOSA-5 and pixel ladder prototype development (for STAR VXD upgrade)

R&D on MIMOSA CMOS sensors

LCWS06-CMOS for VD

- 2 sensor architectures developed:
 - ullet fast column parallel architecture for L1 (25 μs) and L2 (50 μs)
 - multi-memory pixel architecture with delayed read-out (FAPS) for L3-5

- prototype with integrated signal discrimination tested on beam (DESY): 50 μs read-out time, N \lesssim 15 e $^-$, detection eff. \sim 99.3 %, 10 $^{-3}$ fake hits \mapsto
- ullet prototype with radiation tolerant pixel validated at room temperature for doses up to 1 MRad (20 kRad/yr expected from \mathbf{e}_{BS}^{\pm})

Discri Threshold (mV)

- ※ Next important steps → evolve the fast column parallel architecture:
 - translate in micro-circuit technology offering high S/N
- Improve speed

make pixels radiation tolerant at room temperature

replace discriminator by ADC

- * Other on-going activities:
 - o try accommodating FAPS to L2

- \diamond try thinning to \sim 35 μm
- test 2 ladders equipped with prototype sensors in STAR DAQ
- design and fabricate sensors for STAR vertex detector upgrade and for equipping EUDET beam telescope

Monolithic CMOS pixel Detector for ILC Vertex J. Brau Monolithic CMOS Pixel Detectors

Macro / Micro
(50um pitch / 5um pitch)
high speed(timing) / precise position

Big Pixels $50\mu \times 50\mu$ Small Pixels $5\mu \times 5\mu$

New approach

Macro only w/10-15 um pitch

much more tolerant to high background

Big Pixels - High Speed Array - Hit trigger, time of hit Small Pixels - High Resolution Array - Precise x,y position, intensity

Readout
22mmx 125mm chip
-> 176msec @50MHz
parallel readout ?

 \sim 4mW/cm²

Read Noise Signal to noise of 10 to 20

Two active particle sensitive layers:

Powe Consumption

Macro pixel design is completed

DEPFET Development

64x128 pixel DEPFET matrix, cellsize $36 \times 24 \mu m^2$

New system in beam test at DESY:

- f/e Bandwidth and Clock: 50 Mhz
- ~ 6 μs/row with full data transf. to PC
- Sample-clear-sample: ~ 240 ns
- Clear duration 20 ns
 - \rightarrow S/N \approx 111 for 450 μ m sensor

Single pixel tests pre and post irrad.

with 1 Mrad:

→ DEPFET noise in the 50 MHz range: ENC ≈ 50 electrons

2006: new sensor production, new submissions for r/o chip CURO and SWITCHER

LCFI Status Report: Sensors for the ILC Konstantin Stefanov

Column Parallel CCD + CMOS readout CPC1(400×750: 20um) CPR1

CPR2

ISIS(In-situ Storage Image Sensor)

charges are stored in 20-pixel storage

1MHz column parallel ro is enough within 200msec

RF pickup is avoidable

Source Test w/ Fe55

Nick Sinev

Investigation into properties of neutron and electron irradiated CCD

```
Charge traps are produced by neutron irradiation
Study of traps
charge retention time by traps
annealing
Charge Transfer Inefficiency
PUZZLE
electron capture to traps takes long O(msec)
though O(nsec) is expected.

After irradiation of electrons
```

all traps disappeared

Alexei Raspereza Pattern Recognition Performance Simulation Studies in Presence of Backgrounds Track finding eff. Spoiled of VXD Performance Detector optimization has been started using. full simulator and realistic reconstruction program. MARLIN Mokka log(P) Ioa(P w/VXD,TPC,FT implement VXD Ecal, Hcal, Fcal Fake rate digitization + recon. tt -> 6jets @500GeV with beam background Fraction of spoiled tracks Spoiled cos_theta cos_theta Fake rate

Scalar Top Study: Detector Optimization

Andre Sopczak

Cold Dark Matter can be a neutralino

Amount of CDM is depend on the mass difference to stop or stau

 e^+ Z, γ^* \bar{t}_1 \bar{t}_1 \bar{t}_1 \bar{t}_1 \bar{t}_1 \bar{t}_1 \bar{t}_1 \bar{t}_1 \bar{t}_1 \bar{t}_1

We ν is the dominant background.

VTX configuration

(5 or 4 layers) x (material 0.064% or 0.128% X0)

reduce the innermost layer

Large effect whether Layer 0 exist or not

Doubling material doesn't change results.

VXD Elevation & End Views

VXD: FEA & Cooling

 FEA of innermost layer gives 15 μm gravitational deflection (5 μm for a length of 125 mm)

 Study of air cooling gives sensor temperatures ~ -4° C to -10° C for -15° C supply

LCFI status report: Physics & Mechanical for ILC VTX Steve Worm

probability of reconstructing neutral hadron as charged (λ_0)

Software tool for detector optimization realistic recon. program is necessary

C++ based Vertex package:
ZVTOP, Flavor Tag, Vertex Charge

vertex charge performance strongly depends on low momentum tracks

o differences between designs most pronounced for low jet energy and large cos $heta_{je}$

Ladder mechanics

Mechanical studies

practical ladder design

cooling

Gas cooling

Status on the Development of FE & Readout

Aurore Savoy-Navarro

Electronics for Large Silicon Trackers

Final results from the first prototype FE chip in 180 nm: Very encouraging

375 e- input noise with chip-on-board wire-bonding (against 280 simulated)

Second prototype underway in 130nm and full electronic chain (A/D and power cycling included), to be submitted end April

Front-end architecture

130nm Sparsifier

Charge 1- 40 MIP, S/N~ 15- 20, Time resolutions: BC tagging, fine: ~ 2ns

Present technologies - Deep Sub-Micron CMOS

Time-stamping on all I

UMC 0.18 µm, 0.13 µm

Time-stamping on all layers fine time resolution on some layers

SiLC R&D collaboration objectives MB-CNM Barcelona, Sp. HIP, Uni of Helsinki, Fi USA IEKP, Karlsruhe U., Ge Kyungpook U. Taegu, Ko U. Of Michigan, Ann Uni of Liverpool, UK Yonsei U., Seoul, Ko Moscow State Uni. Ru Korea U. Seoul, Ko SCIPP & UCSC Santa Obniank State Uni. Ru Seoul Nat. U., Seoul, Ko LPNHE, CNRS-IN2P3, Fr Cruz SungKyunKwan U. Seoul Charles Uni, Prague, Cz. Tokyo U. (Japan) IFCA U. of Cantabria, Sp. HAMAMATSU (Japan) University of Torino, It Close contacts IFIC-CSIC, Valencia, Sp. with: IHEP, Ac Sc. Vienna, Au FNAL Si Lab team Industrial firms SLAC SID Team (in progress) CERN LHC & Microelectronics R&D Objectives R&D on sensors R&D on associated electronics R&D on Mechanics and developing the needed tools: Laboratory test benches Alignment and position monitoring Simulations . Cooling and other related integration tools

Preliminary measured pulse velocity on Lab test bench: 22ns/m

Applying constant fraction threshold gives of the order 5 cm spatial resolution and few ns time resolution.

>Elementary module revisited:

FE electronics on sensors using flip chip bump bonding

Full chain F.E readout chip in UMC 130nm to be sent by April 24.

Improvements of tracking performances with Silicon components added to TPC

cooling & alignment

Only TPC (no Silicon trackers) FTD as TESLA TDR + SIT & SET FTD new + SIT + SET

Aurore Savoy-Navarro, SiLC, LCWS06, Bangalore

Silicon R&D in Korea

Brief Introduction of TPC

Required position resolution ~ 100-120um Good two track separation

 $\Box P/P \sim 10^{-4}P$

Key Issue

Can we achieve this resolution @ 2.5m drift?

High B field suppress transverse diffusion.

MPGD (GEM, Micromegas) -TPC is a candidate as it is free from ExB effect.

Many groups have been studied performances using small prototype.

R&D towards TDR

phase I
"Demonstration"
Small Prototype

We are here

phase II(~3years)
"Consolidation"

Large Prototype

phase III "Design"

besides the resolution

software

gas study
ion backdrift
neutron background
non-uniform B/E field

Readout method
standard pad readout
std+charge dispersion
advanced pixel readout
electronics
material budget at endplate

Point resolution vs. Drift distance

Mike Ronan

Similar point resolution results were obtained for both Ar-

Methane: 10% (P10) and Ar-Isobutane: 5%. The larger diffusion in Ar-Isobutane is compensated by a larger number of effective electrons.

We find

	Data	Monte Carlo
Ar CH4	19.1 +- 4.6	19.4 +- 0.5
Ar Isobutane	32.1 +- 4.8	30.8 +- 1.3

The extrapolated point resolution at zero drift is at or below 50 microns for both gases.

However, Ar-CF4 is quite different.

Measured Micromegas TPC por Berkeley
Argon-Methane: 10% (P10)
magnetic field of 1. tesla. A M
ionization, electron drift and ava
to be in excellent agreem

MT3/MPT collaboration

Multi Techonologies testing TPC Multi Prototype TPC

test MWPC, GEM & Micromegas

MicroMegas

Charge

Dispersion

GEM with 1.27mm staggered pad in P5 gas under 1T B field

 $\sigma_x = \sqrt{\sigma_0^2 + \frac{C_D^2}{N_{eff}}z}$

Oct. P5 50V/cm

Micromegas-TPC at MT3

Rose Reserva

Ar:isoC4H10 2.3mm pad

CD measurement

$$\sigma_{PR} = \sqrt{{\sigma_{PR}^0}^2 + C_D^2 \times z}$$

Resolution

not behave like this

$$\sigma_x = \sqrt{\sigma_0^2 + \frac{C_D^2}{N_{eff}}z}$$

Pad size is too wide comparing to the narrow MM signal.

It dominates the resolution at short drift region

Makoto Kobayashi

Formulation of Spatial Resolution

for tracks perpendicular to the pad row

$$\prod_{X}^{2} = \prod_{2}^{+\frac{1}{2}} d\left(\frac{x^{*}}{w}\right) \left[i \right] + \frac{1}{N_{\text{eff}}} \left[ii \right] + \left[III \right]$$

When pad response is narrow (like Micromegas) resolution can be described analytically.

 $\begin{bmatrix}
\mathbf{i} \end{bmatrix} \equiv \begin{bmatrix}
j(jw) \langle F_j(x^* + \Box x) \rangle \Box x^* \end{bmatrix}$ $\begin{bmatrix}
\mathbf{ii} \end{bmatrix} \equiv \begin{bmatrix}
jkw^2 \langle F_j(x^* + \Box x)F_k(x^* + \Box x) \rangle \Box \end{bmatrix}$ $jw \langle F_j(x^* + \Box x) \rangle$

Z

narrow pad is necessary or ..

Carleton TPC Micromegas GEM 1 GEM 2 avalanche resistive to light glue pads Charge dispersion readout endplate

•Significant suppression of transverse diffusion at 4 T. Example gases:

D_{Tr} ~ 32 □m/ cm (P10) ~ 20-30 □m/ cm (Ar/CF4 mixtures)

Extrapolate from present data to B = 4T Use D_{Tr} = 32 μ m/ cm Resolution (2 mm pads) $\Box_{Tr} \Box$ 100 \Box m (2 m drift)

ILC TPC R&D studies at DESY/U. Hamburg

resolution study using several fitting methods

Katsumasa Ikematsu

Efficency study using MC

Effort to EUDET & Large Prototype TPC

Preparation of test beam

SiTPC: digital TPC

- •Readout a TPC with CMOS VLSI chips
- •Tracks seen, single-e or single-clusters, with Micromegas or GEM amplification
- •MC and theoretical studies show ultimate resolution

Paul Colas

Developments in progress

USB pluggable readout, new Medipix2 chip Noise under study

Integrate Micromesh onto the chip by postprocessing (InGrid)

Add a protective layer

Provide time measurement (switchable with time over threshold) -> TimePix

Tile-up chips and speed-up readout (RELAXD project)

TPC milestones

2006 Continue LC-TPC R&D via small-prototype tests

organize work for Large Prototype

2007-2009 Test Large Prototype, decide technology

2010 Final design of LC TPC

2014 Four years construction

2015 Commission/Install TPC in LC Detector