
S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

1

Software for the ILC:
Simulation and reconstruction frameworks

Ties Behnke, DESY

Software for the ILC: a brief review

Components of a software system at the ILC

Collaboration

Speaking for the DESY ILC software group

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

2

Software for the ILC

4-vector generation

simulation (fast and full)

digitization

first level reconstruction

second level reconstruction

analysis

(test beam)
data

calibration data

geometry information

Software plays an important role in all aspects
 of detector ILC development

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

3

The Software Situation
Description Detector Language IO-Format Region

Simdet fast Monte Carlo TeslaTDR Fortran StdHep/LCIO EU

SGV fast Monte Carlo simple Geometry, flexible Fortran None (LCIO) EU

Lelaps fast Monte Carlo SiD, flexible C++ SIO, LCIO US

Mokka full simulation – Geant4 TeslaTDR, LDC, flexible C++ ASCI, LCIO EU

Brahms-Sim Geant3 – full simulation TeslaTDR Fortran LCIO EU

SLIC full simulation – Geant4 SiD, flexible C++ LCIO US

LCDG4 full simulation – Geant4 SiD, flexible C++ SIO, LCIO US

Jupiter full simulation – Geant4 JLD (GDL) C++ Root (LCIO) AS

Brahms-Reco TeslaTDR Fortran LCIO EU

Marlin Flexible C++ LCIO EU

hep.lcd reconstruction framework SiD (flexible) Java SIO US

org.lcsim SiD (flexible) Java LCIO US

Jupiter-Satelitesreconstruction and analysis JLD (GDL) C++ Root AS

LCCD Conditions Data Toolkit All C++ MySQL, LCIO EU

GEAR Geometry description Flexible C++ (Java?) XML EU

LCIO Persistency and datamodel All - AS,EU,US

JAS3/WIRED Analysis Tool / Event Display All Java US,EU

reconstruction framework
(most complete)

reconstruction and analysis
application framework

reconstruction framework
 (under development)

Java, C++,
 Fortran

xml,stdhep,
heprep,LCIO,...

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

4

The Problem

Many packages exist (Too many ...???)

Different languages
different authors
different philosophies

We are dublicating efforts on 50% of the needed functionality

and never get around to attack the other 50% beacuse of lack of personpower

My pledge: we have to work together more closely
we have to find ways to do that even though there are
deep and conceptual differences in the way people think

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

5

The solution

Well, not so easy.

Some boundary conditions first

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

6

Design Criteria

ILC software has to live for a long time

Approval will take a few more years,
construction will take O(8) years
ILC will run for O(20) years

ILC software should be able to follow the project throughout the life cycle

Need to be able to follow IT developments

Have to avoid the pitfalls of another change in paradigm
(like Fortran to OO conversion)

A reminder: we are still not at the same level in OO
as we were with the FORTRAN based system!

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

7

Functionality

Long lifetime DOES NOT mean:

todays programs will be used tomorrow

But it means that todays software is designed with a view on the changes
of tomorrow

Try to avoid sudden breaks, try to maintain continuity

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

8

Modules and Interfaces

“my” software

Reconstruction
software

Central task

Data sources

API

Communication between program and “data” only
through well defined interfaces

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

9

Framework Structure

Modules for specific tasks

Modules for specific tasks

Modules for specific tasks

interfaces

Data source Data source
Data source

Data model and
persistency
format

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

10

Interfaces: Example

Geometry information is used in many places
Very detailed, but local: simulation
Less detailed, but know surroundings: reconstruction
Little detail: e.g. Event display

Simulation

reconstruction

analysis

Sources of geometry data
(implementation)

xml files
database
GEANT geometry
...

GEAR

Mat=getPointProperties->getMaterial(x)
ID=getPointProperties->getCellID(x)

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

11

Software Structure

simulation

digitisation
tracking

Ecal
Jet finding

The “old” way

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

12

Software Structure

simulation

digitisation
tracking

Ecal
Jet finding

LCIO

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

13

Software Structure

simulation

digitisation
tracking

Ecal
Jet finding

Implementation

LCIO

Common event model allows fundamental modularisation of software

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

14

Multi Language Support

Design around common event model:
allows multi language support eventually

Simulation
C++

Digitisation
Java

Tracking
F77

ECAL
C++ Jet finding

Java

Implementation
LCIO

Condition: the same event can be accessed through different languages
Compling/ Linking etc has to be solved

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

15

Interfaces in use

Heavy reliance on the definition of interfaces

Example: LCIO is primarily an interface
AIDA is an histogramming interface
GEAR is a geometry interface
.......

 Independent from the implementation (SIO in LCIO, ROOT in AIDA, ...)
 Software remains portable and adaptable
 Scales with the number of systems and complexities

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

16

“I need to get this information from processor A to processor B,
therefore I created a static class”
“I cannot be bothered with dealing with the interface, is slows
down my work...”

Practical implications

Interfaces need to be defined:

Significant amount of work
usually defined interfaces do not answer your immediate needs...

Interfaces have to be accepted by the developers and users

Saving are not immediatly apparent
often it is seen as restrictive and slowing down the work

Its A
LL or N

OTHING!!

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

17

Current Situation: LCIO

LCIO: the linear collider Input Output format

Widely accepted, used by US and EU software frameworks
supported in part by Asian framework

provides a basic foundation for software at the ILC and
exchanges of software

but it is based on a outdated implementation (SIO) at the moment

LCIO has been a very good example for a interface which works

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

18

Current State: GEAR

GEAR: geometry interface

Provide interfaces to access geometry information in reconstruction
and analysis

well defined access functions,

implementation is hidden from the user (at the moment XML + GEANT4)

If used more widely and further developed GEAR promises to significantly
ease the porting of software between different detectors

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

19

Current State: AIDA

Histogramming interface

jointly developed by SLAC and CERN

Provides all histogramming etc functionality independent of a particular
system (like JAS, ROOT, PAW,)

Currenctly implementations exist in Java, C++ (XML output files)
and (soon) Root

If used properly histogramming becomes independent of the presenter
and analysis system.

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

20

Software Framework

Framework provides minimal functionality

 Event loop
 Steering mechanism
 Possibly some logging capability

Functionality in framework comes from individual modules (standalone)

Communication to the outside happens only through defined interfaces

Central software should be as light-weight as possible
ease of installation
ease of maintenance

the work should go into the definition of proper interfaces

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

21

MARLIN

MARLIN (see talk by O.Wendt)

is one such framework

But if interfaces are used systematically frameworks are
exchangable,
modules can be swapped
languages matter much less (ideally)

But MARLIN is just one example

If Jupiter and friends are based on the same model, exchange is possible
of the functionality

S
of

tw
ar

e
fo

r t
he

 IL
C

. T
ie

s
B

eh
nk

e,
 D

E
S

Y

22

Conclusion

Noone will object: Software plays a central role in ILC developments

A highly modular ansatz with well defined API's (interfaces) is
(in my opinion) the most promising way to better and more common
software

Whatever we do, we should avoid to tie ourselves too closely to
particular implementations (like root, like JAS, like SIO...)
to be able to follow developments in IT

There should be more collaboration on the definition of the API's

