Detector Performance, including Particle Flow Algorithm (PFA)

Satoru Yamashita University of Tokyo

Brief introduction of Simulation tools and Particle Flow Algorithm

- 1. Performance requirements
- 2. Tools to optimize detector design and performance
 - 1. Physics benchmark, and Generators
 - 2. Detector simulators
- 3. Particle Flow Algorithm
 - 1. Key techniques
 - 2. Examples of current results
- 4. Summary

Many thanks to Akiya, Ties, Norman, Mark, Tamaki, Junpei,,,,,

For each detector performance, see concept study report tomorrow

Performance Goal of ILC Detectors

The best summarized in World-wide "Linear Collider Detector R&D"

J.Brau et al, http://blueox.uoregon.edu/~lc/randd.ps

- ■VXT: quark flavor tagging Key for Higgs/top and many physics Impact Parameter resolution: ~ 5μm + 10μm / p(GeV) sin^{-3/2} θ
- Tracker: Higgs recoil, resonances

Momentum resolution: dp/p ~ $5 \times 10^{-5} \times p(GeV)$ (central region) $3 \times 10^{-4} \times p(GeV)$ for forward region

Angular resolution: $d\theta \sim 2 \times 10^{-5} \text{ rad (for } |\cos\theta| < 0.99)$

■ For Higgs, SUSY, etc...

Jet energy resolution: $dE/E \sim 0.3 / \sqrt{E(GeV)}$

■ For background veto, missing energy physics

Excellent **Hermeticity**: down to $\theta \sim 5$ --10 mrad (active mask)

ILC Detector Challenges

With respect to detectors at LHC:

■Inner VTX layer	36 times closer to IP
------------------	-----------------------

■VTX pixel size 1 / 30

■VTX materials 1 / 30

■ Materials in Tracker 1 / 6

■ Track mom. resolution 1 / 10

EM cal granularity 1 / 200 !!

Jet energy resolution is a Key for multi-jets events @ ILC

ECFA study - P.Gay et al

60%-->30% improvements is equivalent to improving the ILC luminosity by factor 4~5!!

Fast Simulation

$$e^+e^- --> HZ --> 2jets + vv$$
 $e^+e^- --> HZ --> 4jets$

T. Yoshioka et al

Without Kinematic-fit

Small but significant difference between 30% and 40% resolution

- Physics Benchmark
- Generators
- Detector Simulators
- Reconstruction tools especially PFA

To help detector optimization

Physics Benchmark

Benchmark panel:

T.Barklow, M.Battaglia, Y.Okada, M.Peskin, S.Yamashita, P.Zerwas

Process			_		orimetry		wd	\mathbf{Very} Fwd				ration		Pol.
	σ_{IP}	$\delta p/p^2$	ϵ	δE	$\delta\theta$, $\delta\phi$	Trk	Cal	θ_{min}^{e}	δE_{jet}	M_{jj}	ℓ-Id	V^{0} -Id	$Q_{jet/vtx}$	
$ee \rightarrow Zh \rightarrow \ell\ell X$		X									x			
$ee \rightarrow Zh \rightarrow jjbb$	x	x	x			x				x	x			
ee ightarrow Zh, $h ightarrow bb/cc/ au au$	X		х							X	X			
$ee \rightarrow Zh,h \rightarrow WW$	x		x		x				x	x	x			
$ee \rightarrow Zh, h \rightarrow \mu\mu$	x	x									x			
$ee \rightarrow Zh, h \rightarrow \gamma\gamma$				x	x		x							
$ee \rightarrow Zh, h \rightarrow invisible$			x			x	x							
$ee \rightarrow \nu \nu h$	X	x	х	x			x			x	x			
$ee \rightarrow tth$	X	x	х	х	x		x	x	X		x			
$ee \rightarrow Zhh, \nu\nu hh$	X	x	x	х	x	x	x		х	x	x	x	x	x
$ee \rightarrow WW$										x			x	
$ee \rightarrow \nu \nu WW/ZZ$						x	x		x	x	x			
$ee \rightarrow \tilde{e}_R \tilde{e}_R$ (Point 1)		x						x			x			х
$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$	x	x						x						
$ee \rightarrow \bar{t}_1\bar{t}_1$	x	x							x	x		x		
$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1 \text{ (Point 3)}$	X	X			x	x	x	х	Х					
$ee \rightarrow \bar{\chi}_2^0 \bar{\chi}_3^0$ (Point 5)									x	x				
$ee \rightarrow HA \rightarrow bbbb$	x	x								x	x			
$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$			x											
$\chi_1^0 \rightarrow \gamma + \not\!\!E$					x									
$\tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} + \pi_{soft}^{\pm}$			x					x						
$ee \rightarrow tt \rightarrow 6 \ jets$	X		х						х	х	х			
$ee \rightarrow ff [e, \mu, \tau; b, c]$	x		x				x		x		x		x	x
$ee \rightarrow \gamma G \text{ (ADD)}$				x	x			x						x
$ee ightarrow KK ightarrow far{f}$		X									х			
$ee \rightarrow ee_{fwd}$								+ _+					0	

Chosen Characteristic benchmark channels

- 1. Single Particle, Jet-pair
- 2. Multi-Jets environments (PFA study etc..)
- 3. Flavor tagging and tau-ID
- 4. Small visible energy case (Forward area)

0. Single
$$e^{\pm}$$
, μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K_{s}^{0} , γ , u , s , c , b ; $0 < |\cos \theta| < 1$, $0 GeV$

1.
$$e^+e^- \to f\bar{f}$$
, $f = e$, c , b at $\sqrt{s}=1.0$ TeV;

2.
$$e^+e^- \rightarrow Zh$$
, $\rightarrow \ell^+\ell^-X$, $m_h = 120$ GeV at \sqrt{s} =0.35 TeV;

3.
$$e^+e^- \to Zh, h \to c\bar{c}, \tau^+\tau^-, WW^*, m_h = 120 \text{ GeV at } \sqrt{s} = 0.35 \text{ TeV};$$

4.
$$e^+e^- \rightarrow Zhh$$
, $m_h = 120 \text{ GeV at } \sqrt{s} = 0.5 \text{ TeV}$;

5.
$$e^+e^- \rightarrow \tilde{e}_R\tilde{e}_R$$
 at Point 1 at \sqrt{s} =0.5 TeV;

6.
$$e^+e^- \rightarrow \tilde{\tau}_1\tilde{\tau}_1$$
, at Point 3 at \sqrt{s} =0.5 TeV;

7.
$$e^+e^- \to \chi_1^+\chi_1^-/\chi_2^0\chi_2^0$$
 at Point 5 at \sqrt{s} =0.5 TeV;

Event generators

Many generators under developments / available

ALPHA, COMPHEP, KORALW(GRACE inside), PYTHIA, NEXTCALIBUR, WPHACT, WWGENPV,WTO, GRACE, LUSIFER, WHIZARD, SIXFAP, PHEDAS,EETT6F, AMEGIC++,...,

Many diagrams must be calculated

WHIZARD Monte Carlo

All 0,2,4,6-fermion and top quark (8-fermion processes). 500 fb⁻¹ @ 0.5 TeV all generated.

A news from GRACE

A new version of GRACE **grcft**: much faster than old grc

More than 5000 graphs wso6

Event Samples

From Norman. G

- Have generated canonical data samples and have processed them through full detector simulations.
- simple single particles: γ , μ , e, $\pi^{+/-}$, n, ...
- composite single particles: $\pi^0, \rho, K^0_S, \tau, \psi$
- Z Pole events: 30k/detector, 240,000 events
- WW, ZZ, tt, qq, tau pairs, mu pairs, Zγ, Zh: with beam pol
 - 10-30k/detector, 960,000 events
- Web accessible:

http://www.lcsim.org/datasets/ftp.html

Exiting amplitude using GRACE/grcft

processes	# of graphs	Accelerataed factor to old GRACE
$e^+e^> (e^+e^-)^2$	654	3.60
$e^{+}e^{-}> (e^{+}e^{-})^{3}$	145128	83.70
$e^+e^- \rightarrow e^+e^-\mu^+\mu^-\tau^+\tau^-$	12094	15.14
$e^+e^- \rightarrow e^+e^-\mu^+\mu^-\tau^+\tau^-\gamma$	117680	142.86

Kinematics is complicated to construct a realistic generator.

→ we need further study.

Plan: systematic study of

tree level: $e+e-\rightarrow 7$, 8: 1-loop effects for $e+e-\rightarrow 4f$

MSSM

 $e+e- \rightarrow 2,3;$

SUSY23(23 processes)

SPA scheme should be introduced.

1-loop effects should be discussed. → see Yasui's talk

Software / frameworks for Detector Performance study

	Usage	Detector (birth)	Language	I/O-format
Simdet	fast MC	Tesla TDR	Fortran	StdHep/LCIO
JSF-Quicksim	fast MC	ACFA study / GLD	C++	LCIO / internal
SGV	fast MC	flexible	Fortran	(LCIO)
Lelaps	fast MC	SiD	C++	SIO/LCIO
Mokka	full MC - Geant4	LDC	C++	ASCL/LCIO
Brahms-Sim	full MC - Geant3	Tesla TDR	Fortran	LCIO
SLIC	full MC - Geant4	SiD	C++	LCIO
LCDG4	full MC - Geant4	SiD	C++	SIO/LCIO
JUPITER	full MC - Geant4	GLD	C++	LCIO
Brahms-Reco	reconstruction framework	Tesla TDR	Fortran	LCIO
Marlin	reconstruction and analysis	Flexible	C++	LCIO
hep.lcd	reconstruction framework	SiD	Java	SIO
org.lcsim	reconstruction framework	SiD	Java	LCIO
JUPITER-Satelite	reconstruction and analysis	GLD	C++	LCIO/root
URANUS	analyses utilities	ACFA-study / GLD	C++	
LCCD	Conditions Data toolkit	any	C++	
GEAR	Geometry description	any	C++/Java	
JAS3/WIRED	Analyses tool/event display	SiD, LDC	Java	
JSF-framework	Analyses tool/event display	GLD	C++	
LCIO	I/O common data format	common	C++/Fartran/Java	

Many are under developments and many others as well.

ILC Simulation Frameworks (Geant4)

- Geant4, StdHep and LCIO are common feature
- Each trying to be generic with different approach different ways to define geometries

ILC software chain

7

Jupiter/Satellites Concepts

JSF: the analysis flow controller based on ROOT: I/O=LCIO
The package includes event generators, Quick Simulator,
and event display

Generators / Simulators are prepared... Next step is the reconstruction

Jet energy reconstruction

Typical event 30% electro-magnetic(γ), 70% hadronic.

• Typical resolution: $\delta E/E=10\sim15\%/\sqrt{E(GeV)}$ for EM-CAL, $\delta E/E=40\sim60\%/\sqrt{E}$ for Hadron-CAL

Ultimate resolution only with Calorimeters $\delta E/E = \sim 45\% / \sqrt{E \text{ (GeV)}}$ (perfect calibration case)

Particle Flow Algorithm (Energy flow): widely used at LEP.

- -- powerful & simple philosophy, but not easy technically.
- 70% hadronic ~ **60% charged hadron** + 10% neutral hadron
- Tracker's resolution is much better : $\delta P/P = 5 \times 10^{-5} \times P(GeV)$
- Try to remove CAL-hits caused by charged hadron and use tracker Energy instead: (Technical challenge).

"Perfect (cheated) PFA" to know the ultimate performance

- Full simulation
- Sub-detector (CAL/Trackers) resolution same as reality.
- Perfect Track CAL association looking into MC info (cheating).

u,d,s quark pair Events at Z pole

Breakdown of Error Source

Neutrino 0.30 GeV

5mrad cut 0.62

Low Pt track 0.83

Track Resol. 0.0

EM Cal Resol. 1.36

HD Cal Resol. 1.70

Total 2.48

S.Yamashita @ LCWS06

Sumie Yamamoto et 200

Challenges of PFA in reality

Track - CALhits association is not easy in real world...

PFA in reality

- From Detector Concepts
 - How to reduce particle density in CAL to make track-CAL association easy? How to improve overlap of hits in CAL?
 - --> High magnetic field and/or
 - --> Large volume detector and/or
 - --> High granularity (~must)
- Most important key is the pattern recognition (clustering/tracking) in EM CAL:
 - Very high hit density
 - Mixture of different particles (γ, h⁺⁻, h⁰) -- different calibration factors
- How to clusterize/connects hits (clustering techniques)
- How to discriminate γ and hadron in EM-CAL (shower shape analyses)
- How to remove satellite (daughter) clusters far from original tracks (time analyses / shape analyses)

Two directions of PFA under developments

Full pattern recognition in CAL

Simple Track-hit association

- •can be ~ultimate PFA
- •Need to consider many patterns

- •Simple, fast and robust
- •Weak for very high density case

What is suitable depends on detector configuration, operation larity, size, e/π ration (some person type or not),,,

Example of shower shape analyses etc..

Other techniques

- •MIP track finding in CAL
- •Neutral cluster finding
- •Satellite cluster rejection
- •Reconstruction of π^0

Many developments on going WOLF/MAGIC PandraPFA Jupiter-Satellite

Efficiency and Purity (Energy Weighted) @ usd jets @ Z (GLD study)

- Charged Hadron finding Efficiency = 94.9%, Purity = 89.0%
- Gamma Finding Efficiency = 85.2%, Purity = 92.2%

Still big room to improve ! 24

Red: charged hadron

Yellow:gamma

Blue: neutron

Before PFA

Red: charged hadron

Yellow :gamma Blue : neutron

After gamma finding

Red : charged hadron Yellow :gamma

Blue: neutron

After charged Hadron tagging

Majority of gamma's and charged hadrons are tagged properly

Example of PFA current result

Note: Only for jets towards barrel region, S. Yamashita @ndwsfect of neutrino is removed. 29

Taken from M.Thomson's slides at ECFA study

WOLF Results (Z--> uds jets)

- * RMS(90%)
 - **★Find smallest region containing 90 % of events**
 - **★Determine rms in this region**

	RMS (90%)
RPC HCAL	4.3 GeV
Tile HCAL	4.1 GeV
RPC (MAGIC)	4.4 GeV

Summary

- **Various software tools** (Generators, Simulators, reconstruction tools) have been prepared and extensively improved/developed. We are ready for full detector performance study such as PFA.
- **LCIO format** is commonly used for all concepts study, and inter-concepts developments for reconstruction tools have been started.
- Various method of **Particle Flow Algorithm for ILC** is under development. Philosophy is simple and widely used at LEP, but <u>it's not technically straightforward.</u>
- (Ultimate goal is $\delta E/E \sim 25\%/\sqrt{E(GeV)}$ and target is $30\%/\sqrt{E(GeV)}$)
- Big activity is on-going world-wide for PFA, and nice and similar results have been obtained in different detector configuration with different algorithms.
- While there are still many rooms for improvements, current PFA studies already achieved $\delta E/E < 40\%/\sqrt{E(GeV)}$
- For each detector performance, let's watch the concept talks (tomorrow)