Forward Tracking Detectors

Klaus Mönig

<u>Disclaimer:</u> This talk is meant to motivate forward tracking and to show possible problems and solutions. The TESLA-TDR detector \approx LDC will be used over-proportionally for illustration.

Why forward tracking?

- Many processes at LC are peaked in the forward region like Bhabha scattering or W-pair production
- Fermion pair production has highest sensitivity to forward-backward asymmetry or to distinguish Z' effects from extra dimensions in the forward region

- W-pairs forward peaked with high momentum muons due to W-polarisation
- Good momentum resolution in the forward region is essential for charge determination and W suppression

Multi-jet final states

• At ILC many interesting processes have high jet multiplicity: tt̄: 6 jets, ZHH: 6-10 jets, tt̄H: 8-10 jets

• If the involved energies are not too far above threshold the jet directions are rather independent and 2250 flat in $\cos\theta$

• Even if the primary event is central there is a very high chance that at least one jet is forward

• Need full pflow coverage down to lowest possible angles

Minimum jet polar angle for $e^+e^- \rightarrow t\bar{t}$

Bhabha scattering

- ideal calibration process for the beam spectrum
- again strongly forward peaked $(d\sigma/d\theta \propto 1/\theta^3)$
- reconstruct $\sqrt{s'}$ of e⁺e⁻ system from polar angles assuming energy momentum conservation and only one radiated photon
- want to measure beamstrahlung $(\mathcal{O}(10^{-2}))$ and beam energy spread $(\mathcal{O}(10^{-3}))$
- $\sqrt{s'}$ error from angular reconstruction method: $\Delta \sqrt{s'}/\sqrt{s'} \approx \Delta \theta/\sin \theta$ need $\Delta \theta < 10^{-4}$ in forward region
- electrons radiate in material and cylinders (e.g. TPC field cage) are crossed with small angles
 - better assure angular resolution close to the IP
- good angular resolution close to the IP is key point for Bhabha

Radiative Return (e⁺e⁻ $\rightarrow Z\gamma \rightarrow \ell^+\ell^-\gamma$)

- Ideal calibration process for the beam energy
- Due to large boost leptons are normally in the forward region
- The beam energy can be determined to $1.5 \cdot 10^{-4}$ using only polar angles
- It has been shown that the precision can be improved to $5 \cdot 10^{-5}$ with $\Delta \frac{1}{p_t} = 2 \cdot 10^{-5} / \text{GeV}$ momentum resolution if the resolution is known apart from one free scale.

Minimum angle of radiative return events

General considerations

General scaling of momentum resolution: $\frac{\Delta p}{p} \propto \frac{p_t}{R^2}$ (Details depend on exact detector setup)

- Barrel region $(\theta > \theta_0)$: $p_t = p \sin \theta$, R = const. $\Rightarrow \frac{\Delta p}{p} \propto p \sin \theta$
- Forward region $(\theta < \theta_0)$: $p_t = p \sin \theta$, $R = l \tan \theta$ $\Rightarrow \frac{\Delta p}{p} \propto p \sin \theta / \tan^2 \theta \approx p / \tan \theta$

Possible layout:

Cylinders:

- need to be very long
- z-resolution decreases with angle

Disks:

- Less detector material
- Possibly better z resolution
- however material from barrel electronics and cables needs to be crossed

Background in the forward region

Pair background larger for smaller θ

Possibly many hits close to IP
Additional problem with large cross-

ing angle (e.g. 20 mrad):

Backscattering Outgoing beamhole above inner detector radius (\sim 3.5 cm)

- Ideal solenoid: The backscattering background is guided into the detector at constant radius by solenoid field
- With DID: The background from the outgoing hole is guided to even larger radii

In practise both components are relevant

The backscattered background has an $\mathcal{O}(5\mathrm{m})$ longer way to the detector

 \rightarrow A $\mathcal{O}(5\text{ns})$ time resolution can suppress this background component in the crossing angle case.

Possible technologies close to IP

Pixels

Silicon strips

- in general less sensitive to back- precise ground and track density
- expensive
- two types:

- relatively cheap
- sensitive to background and track density

Vertex detector technology

- -very precise
- -very thin
- -slow (integration over ~ 100 bx makes them background sensitive

LHC type hybrid pixels

- -medium precision ($\sim (50 \times 400 \mu \text{m}^2)/\sqrt{12}$)
- relatively thick (ATLAS: $2\%X_0$)

Concrete implementation in the concepts

SID

Vertex detector and main | 655 cm tracker separated in barrel cylinders and endcap tracks

Klaus Mönig

LDC

- Long TPC
- Vertex detector only cylinders
- Intermediate silicon with forward discs
- One plane behind TPC

- Vertex detector like disk under investigation
- FTD is mandatory
- FCH helps a lot a lowest possible angles

θ [deg]

<u>GLD</u>

- Very similar to LDC
- No disk behind TPC (yet)

New challenge: systematics

Example: beam energy with radiative return

• Beam energy can be measured from angles and Z-mass constraint

•
$$\sqrt{s} = m_{\rm Z} \sqrt{\frac{\sin \theta_1 + \sin \theta_2 - \sin(\theta_1 + \theta_2)}{\sin \theta_1 + \sin \theta_2 + \sin(\theta_1 + \theta_2)}}$$

- Error from 100 fb⁻¹ at $\sqrt{s} = 350 \,\text{GeV}$: $\Delta \sqrt{s} = 50 \,\text{MeV}$
- Detector uncertainty: Aspect ratio (R/L) error systematically shifts θ

$$\Delta\left(\frac{\delta R}{\delta L}\right) = \delta \tan \theta = 10^{-4} \Rightarrow \Delta \sqrt{s} = 30 \text{ MeV}$$

Need this precision in the detector aspect ratio

Can only be reached with a robust design that can be surveyed well before installation

How to optimise the forward tracking

- (Partially conflicting) parameters: material, resolution, background tolerance, price
- Material might be critical for particle flow
- Background may prohibit vertex detector like disks
- Choice strips/pixels also determined by local track density
- Urgently need a pattern recognition program to answer these questions

Performance (example LDC)

16

- $\Delta \frac{1}{p} = 2 \cdot 10^{-5} 10^{-3}$ depending on angle and detector setup
- Polar angle resolution $20 \,\mu \text{rad}$ even with inner silicon only
- Sufficient to measure beamstrahlung and beamspread from Bhabha acolinearity

Polar angle resolution in forward region

$\Delta \frac{1}{p}$ for different LDC setups

$\sqrt{s'}$ spectra from Bhabha acolinearity

Conclusions

- Forward tracking needed for physics and calibration
- In principle under control, but needs optimisation
- Additional large effort on detector R&D seems not necessary
- However a reconstruction algorithm is urgently needed
- Forward tracking is certainly not the most important part of the detector but should also not be forgotten