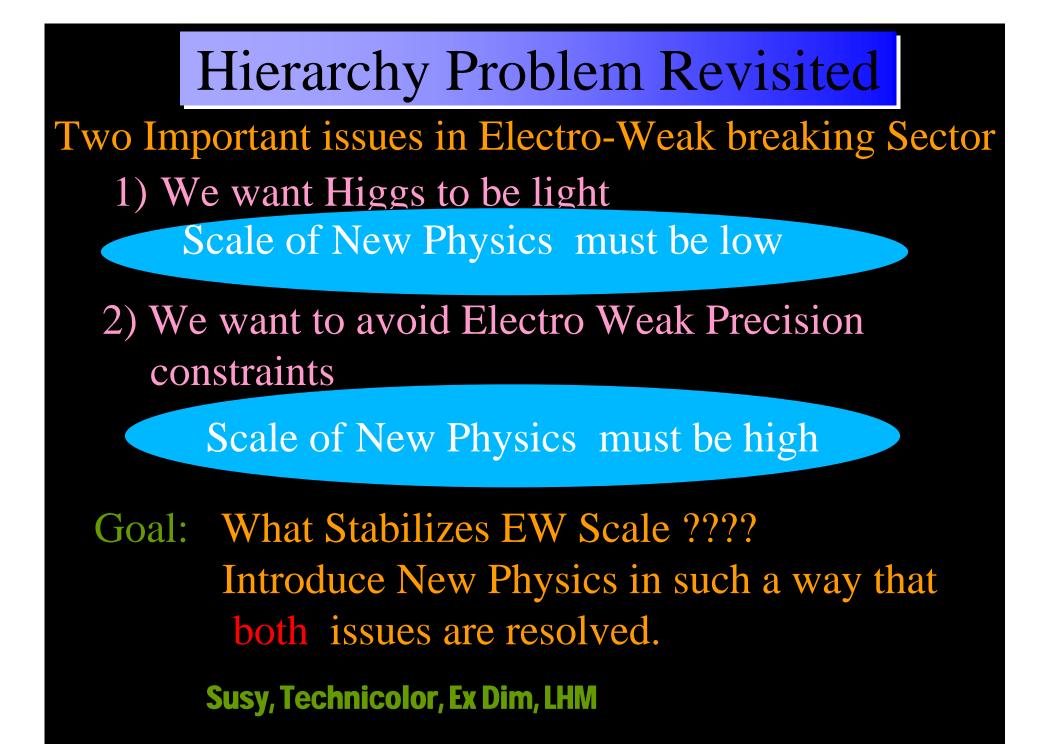
T Odd Gauge Bosons @ $\gamma \gamma$ collider



Sukanta Dutta

SGTB Khalsa College, University of Delhi, India

Collaborator: Debajyoti Choudhury

LCWS '06 Bangalore, India

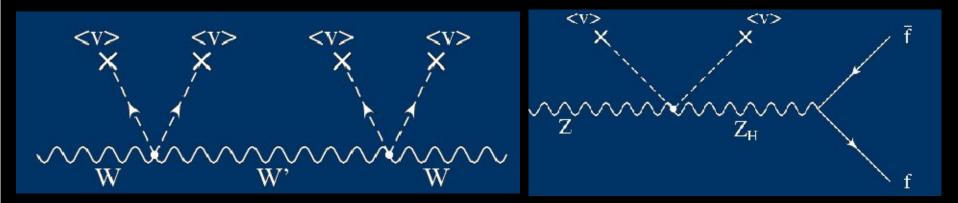
Little Higgs Models:

CONCEPT OF COLLECTIVE SYMMETRY BREAKING

Higgs is a pseudo-Goldstone Boson kept light by approximate global symmetries (old idea, new features) George, Kaplan early 80's

Global symmetries are broken explicitly in a unique way by 2 sets of interactions with each preserving a subset of symmetry Arkani-Hamed, Cohen, Georgi hep-ph/0105239

Together couplings break all symmetries protecting the Higgs mass from one loop quadratic divergences. These divergences are cancelled by new particles at TeV scale with the same spins as the corresponding SM particles


Generic Spectrum of Little Higgs

- Based on Non-Linear σ Model describing
 SU(5)/SO(5 global symmetry breaking
 Symmetry breaking originates from VEV of symmetric Tensor
 (convenient basis characterized by direction Σ₀)
- ➢Goldstone fluctuations are given by Pion fields Π^aX^a where X are the generators of the broken symmetry (0)
- Solutions of the broken symmetry Non Linear Σ field is then given a $\Sigma(x) = e^{i\Pi/f} \Sigma_0 e^{i\Pi^T/f} = e^{2i\Pi/f} \Sigma_0$. $\Pi = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \Phi \\ \frac{H^{\dagger}}{\sqrt{2}} & 0 & \frac{H^T}{\sqrt{2}} \\ \Phi^{\dagger} & \frac{H^*}{\sqrt{2}} & 0 \end{pmatrix}$ f is the value of VEV that accomplishes the breaking.
- $[SU(2)xU(1)]_1x[SU(2)xU(1)]_2$ subgroups are gauged whose generators are

$$Q_{1}^{a} = \begin{pmatrix} \sigma^{a}/2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y_{1} = \operatorname{diag}(3, 3, -2, -2, -2)/10 \quad \text{Vacuum breaks } [SU(2)xU(1)]^{2} \quad \text{gauge symmetry down to 2 diagonal subgroups}$$
$$Q_{2}^{a} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sigma^{a*}/2 \end{pmatrix}, \quad Y_{2} = \operatorname{diag}(2, 2, 2, -3, -3)/10, \quad 1) \quad \text{gauge bosons with masses of order f}$$
$$2) \quad \text{mass less (SM gauge bosons)}$$

Why Little Higgs Models did not work

Original models have stringent bounds f ~ 4 TeV Csaki, Hubisz, Kribs, Meade, Ternir

Other models which evade EW bounds exists but have complicated gauge/symmetry structures

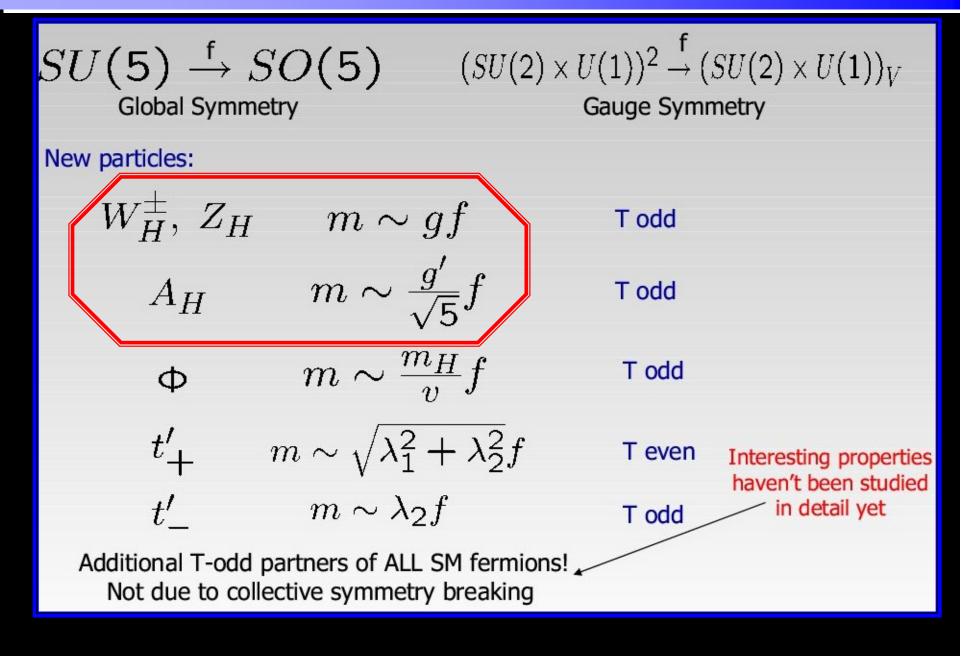
 Just as R parity cures Proton decay problem in SUSY,
 T parity is the discrete parity needs to be introduced to solve tree level EW issues in Little Higgs Models

Can also provide dark matter candidate

Assigning T Parity

Assign all non-SM particles odd and all SM particles even T parity

Gauge fields : $A_1 \leftrightarrow A_2$


Scalar fields : $\Pi \rightarrow -\Omega \Pi \Omega$ where $\Omega = \text{diag}(1,1,-1,1,1)$

Non Linear Σ field : $\Sigma \to \Sigma_0 \Omega \Sigma^{\dagger} \Omega \Sigma_0$

Kinetic terms of the Non Linear σ Model field Σ T-Parity inv. Demands $g_1 = g_2 = 2^{1/2} g$ and $g_1' = g_2' = 2^{1/2} g'$

$$\frac{f^2}{8} \text{Tr} D_{\mu} \Sigma (D^{\mu} \Sigma)^{\dagger}, \qquad (\Box)$$

where
$$D_{\mu} \Sigma = \partial_{\mu} \Sigma - i \sum_{i} \left[g_j W_j^a (Q_j^a \Sigma + \Sigma Q_j^{aT}) + g_j' B_j (Y_j \Sigma + \Sigma Y_j) \right]$$

Phenomenology of T Parity Little Higgs Cheng, Low

Phenomenology of T Parity Little Higgs Cheng, Low

CONTRIBUTION TO EW OBSERVABLE ARE LOOP SUPPRESSED. f ~0.5 TeV \Rightarrow No Fine Tuning

LIGHTEST T ODD A_H PARTICLE (LTP) IS STABLE.

A GOOD DARK MATTER CANDIDATE.

T ODD PARTICLES CAN BE PAIR

PRODUCED WHICH CAN CASCADE DOWN TO LTP

COLLIDER SIGNALS: JETS/LEPTONS +

Missing E

W_H Production @ γ γ collider

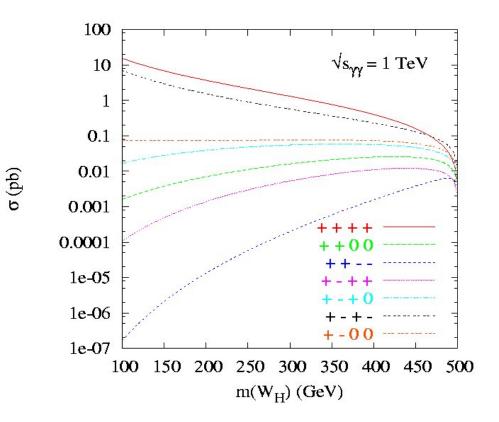
Feynman Diagrams : Resonance production of W_H Pairs

$$\gamma\gamma \to (W_H^+ W_H^-) \to (A_H W^+) \ (A_H W^-)$$

$$\begin{array}{c} \gamma_{1} \ \epsilon^{\alpha}(k_{1}) \\ & \swarrow \\ & \swarrow \\ & \swarrow \\ & \swarrow \\ & \uparrow \\ & \downarrow \\ & \downarrow \\ & \uparrow \\ & \downarrow \\$$

Hunting Signatures : Four Hard Jets from 2 W's and Missing Energy/p_T

Potential Backgrounds 1)


$$\gamma\gamma \longrightarrow W^+ W^- + \nu\bar{\nu}$$

$$\gamma\gamma \longrightarrow W^+ W^-$$

W_H Production with Fixed C.M. Energy

Matrix Element Squared is computed using MADGRAPH

For Fixed C.M. Energy of Two Photons =1 TeV, for various Polarization Choices :

Spectrum of Colliding Photons

$$\begin{split} F_{\gamma/e}(x) &= \frac{1}{D(\xi)} \bigg[1 - x + \frac{1}{1 - x} - \frac{4x}{\xi(1 - x)} + \frac{4x^2}{\xi^2(1 - x)^2} \\ &- 2\lambda_e P_c \bigg(\frac{x}{1 - x} - \frac{2x^2}{(1 - x)^2 \xi} \bigg) (2 - x) \bigg], \\ \text{and} \bigg| - \\ D(\xi) &= \bigg(1 - \frac{4}{\xi} - \frac{8}{\xi^2} \bigg) \ln(1 + \xi) + \frac{1}{2} + \frac{8}{\xi} - \frac{1}{1(1 + \xi)^2}, \end{split}$$

 $x = \omega / E_e$ is fraction of electron energy carried by scattered photon ω is the backscattered photon energy, E_e is the incident electron energy, $\xi = 4E_e\omega_0 / m_e^2$, ω_0 is the laser - photon energy, $\xi = 4.8$, so $D(\xi) = 1.8$ λ_e polarizaton of electron, P_e is polarizaton of laser

$$dL_{\gamma\gamma} = 2zdz \int_{x^2/x_{max}}^{x_{max}} \frac{dx}{x} F_{\gamma/e}(x) F_{\gamma/e}(z^2/x).$$

with $z = \sqrt{\hat{s}/s}$, and $x_{max} = \omega_{max}/E_e$,

Kinematics Cuts

▶ 1) Minimum Energy of Jets from W decay

 \geq 2) Minimum Missing P_T required

➢ 3) Rapidity Cut for each jet

$$|\eta_{\rm jet}| \leq 3$$

 $p_T \ge 50 \,\, \mathrm{GeV}$

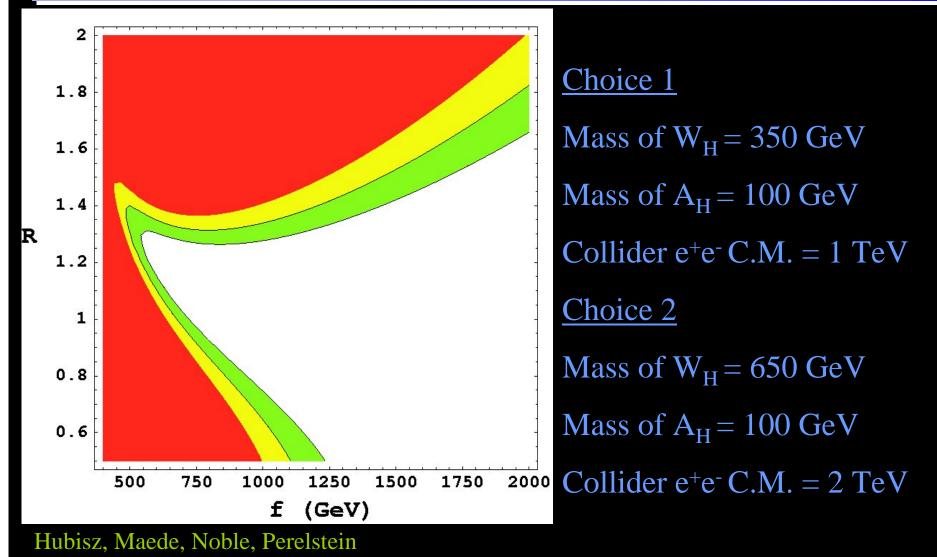
 $E_{\rm jet} \ge 10 ~{\rm GeV}$

▶ 4) Invariant Mass of any 2 of the 4 Smeared jets should satisfy
 ▶ 75 GeV ≤ $|M_{i,j}| ≤ 85$ GeV

► 5) Isolation cut

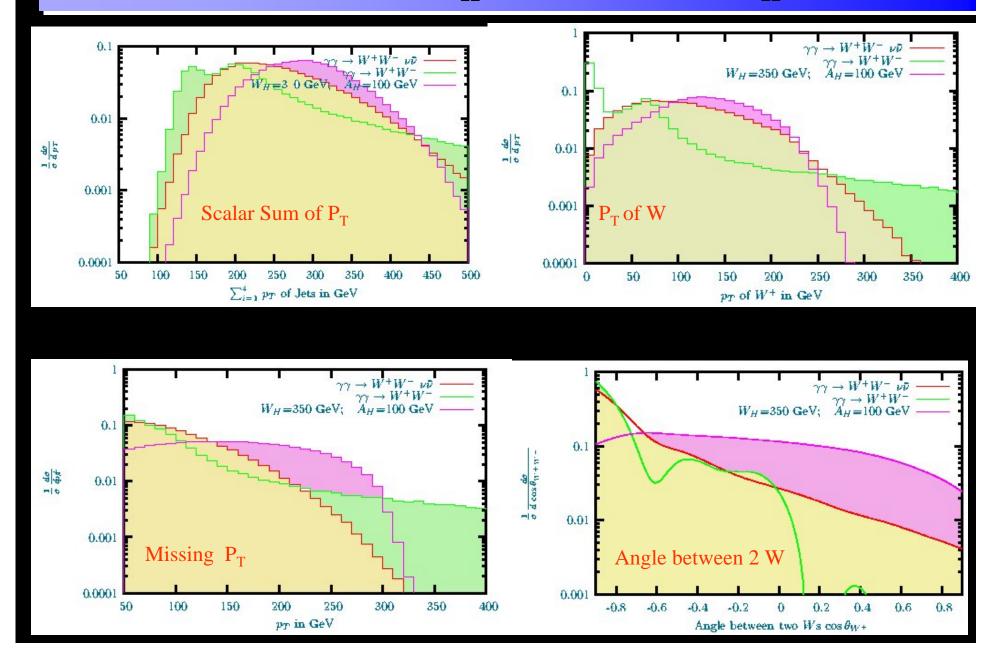
$$\Delta R_{i,j} = \sqrt{\left(\Delta \Phi_{i,j}\right)^2 + \left(\Delta \eta_{i,j}\right)^2} \ge .7$$
(Between any two jets)

Smearing

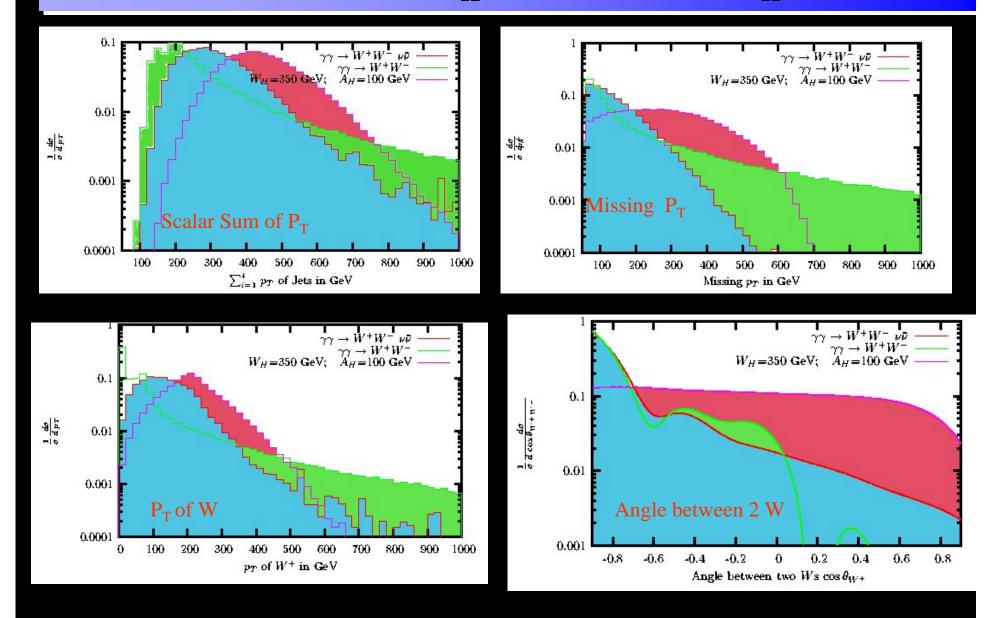

Used CERN Routine SMEAR

$$\sigma_{HAD}(E_j) = \frac{\delta E_j}{E_j} = \frac{0.5}{\sqrt{E_j/1GeV}} + 0.04$$
Transverse Momentum p_T and azimuth ϕ are smeared together, taking into their correlation.

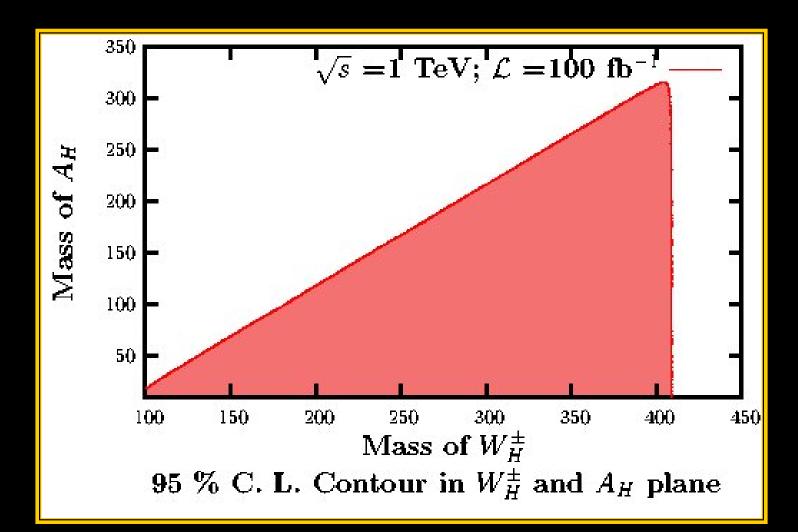
$$\sigma^2 \left(\frac{1}{p_T}\right) = V_{COV}(1,1) = PRES^2 + \left[\frac{PMSPTS}{p_T\sqrt{\sin(\theta)}}\right]^2$$


$$\frac{1/p_T \text{ and } \phi \text{ are Gaussian of half-width given by } \sqrt{V_{COV}(1,1)}}{\sqrt{V_{COV}(1,1)}} = V_{COV}(2,2) = PRES^2 + \left[\frac{PMSPHS}{p_T\sqrt{\sin(\theta)}}\right]^2$$
and correlation $V_{COV}(1,2) = -\left[\frac{PMSPCS}{p_T\sqrt{\sin(\theta)}}\right]^2$
The z-component is smeared as a Gaussian in $1/p_Z$ with half-width
$$\sigma \left(\frac{1}{p_Z}\right) = \left[\frac{PMSPTS}{p_Z\sqrt{\sin(\theta)}}\right]^2$$

Choice of Parameters in LHM



100 % decay of W_H into A_H and W

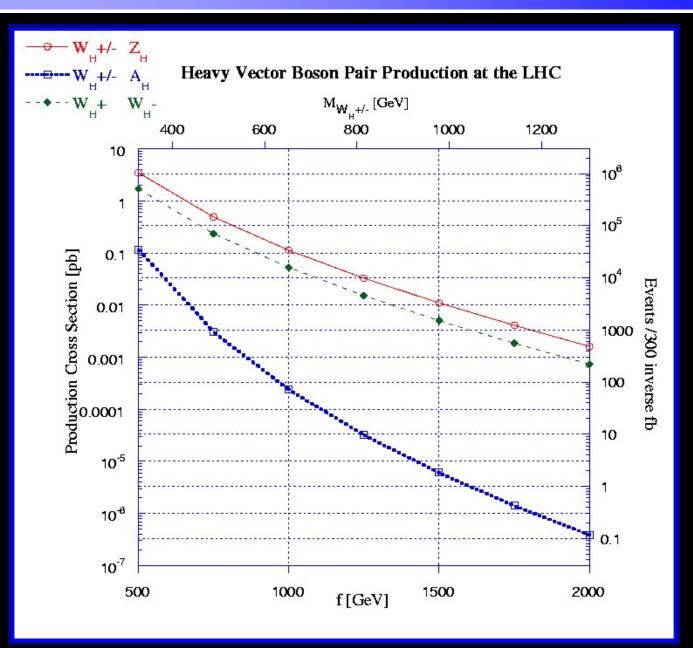

Distribution Plots : $W_H = 350 \text{ GeV}$ and $A_H = 100 \text{ GeV}$

Distribution Plots : $W_H = 650 \text{ GeV}$ and $A_H = 100 \text{ GeV}$

95 % C.L. Contours in W_H and A_H Plane

Summary

*Little Higgs theories provide a new mechanism to solve the naturalness problem. T parity theories evades EW constraints and provides a good dark Matter candidate. A natural link between TeV Physics and Cosmology


*The masses of various new particles in LHM are modeldependent and can be very different. They are not expected to be degenerate as in UED models. This affects the relic density calculation and also the production rates.

The \gamma\gamma \gamma collider has high sensitivity mass reach for heavy charge gauge boson production.

Study for initial polarized beam and distribution of different helicities of W_H are required for the complete Analysis (Work in Progress)

*LHC will discover new stabilizing EW particles but their origin and detailed property has to come from ILC with $\gamma \gamma$ option

Production Cross- Section in LHC

Thank You