Scalla/xrootd

Andrew Hanushevsky, SLAC

SLAC National Accelerator Laboratory Stanford University 19-May-09

ANL Tier3(g,w) Meeting

Outline

File servers ■ NFS & xrootd **#** How xrootd manages files Multiple file servers (i.e., clustering) Considerations and pitfalls **#** Getting to xrootd hosted file data **#** Native monitoring **#**Conclusions

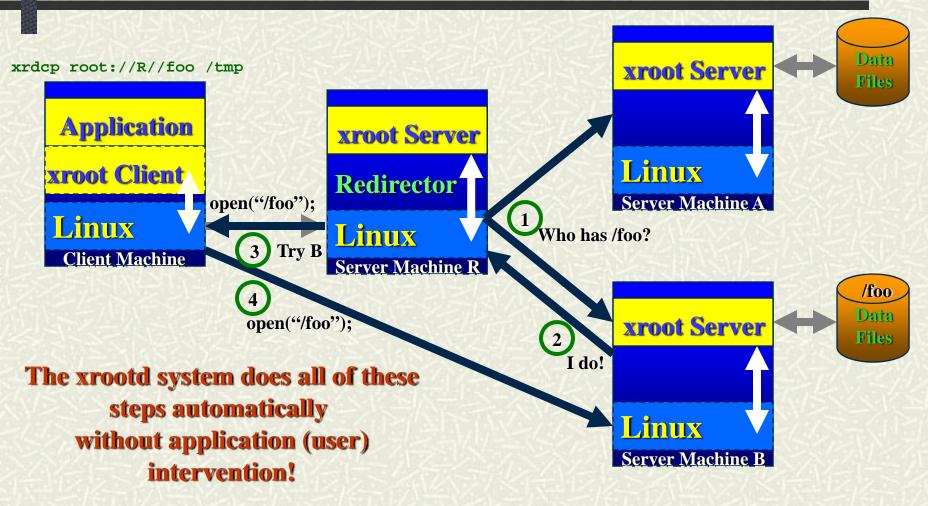
File Server Types

xrootd is nothing more than an application level file server & client using another protocol

Why Not Just Use NFS?

#NFS V2 & V3 inadequate

Scaling problems with large batch farms
 Unwieldy when more than one server needed


NFS V4?

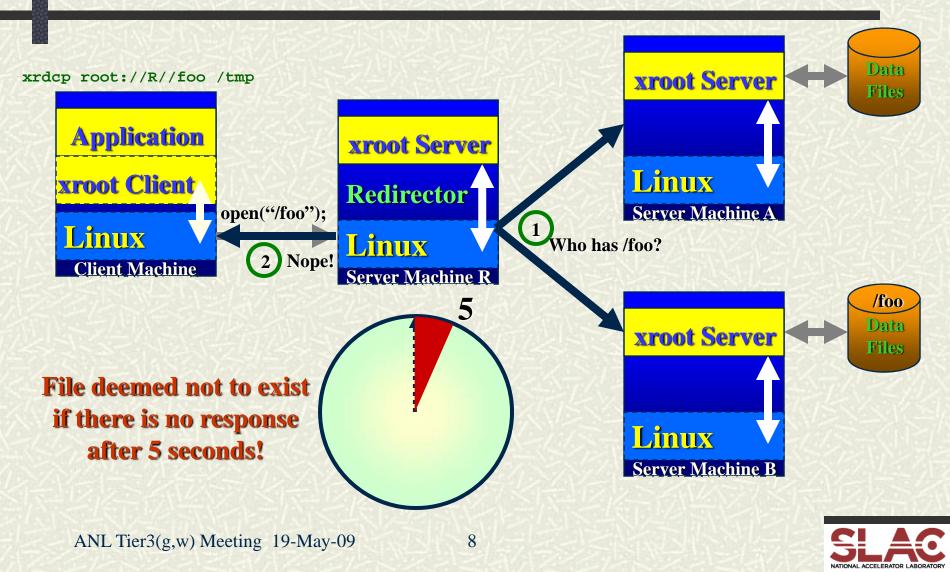
- Relatively new
 - Standard is still being evolved
 - Mostly in the area of new features
 - Multiple server clustering & stress stability being vetted
- Performance appears similar to NFS V3

Let's explore multiple server support in xrootd

xrootd & Multiple File Servers I

Corresponding Configuration File

```
General section that applies to all servers
#
#
all.export /atlas
if redirector.slac.stanford.edu
all.role manager
else
all.role server
fi
all.manager redirector.slac.stanford.edu 3121
# Cluster management specific configuration
#
cms.allow *.slac.stanford.edu
# xrootd specific configuration
#
xrootd.fslib /opt/xrootd/prod/lib/libXrdOfs.so
xrootd.port 1094
```



File Discovery Considerations I

The redirector does not have a catalog of files

- It always asks each server, and
- Caches the answers in memory for a "while"
 - So, it won't ask again when asked about a past lookup
- # Allows real-time configuration changes
 - Clients never see the disruption
- **#** Does have some side-effects
 - The lookup takes less than a millisecond when files exist
 - Much longer when a requested file does not exist!

xrootd & Multiple File Servers II

File Discovery Considerations II

System optimized for "file exists" case! Penalty for going after missing files **#** Aren't *new* files, by definition, missing? Yes, but that involves writing data! The system is optimized for reading data • So, creating a new file *will* suffer a 5 second delay • Can minimize the delay by using the **xprep** command Primes the redirector's file memory cache ahead of time **t** Can files appear to be missing any other way?

Missing File vs. Missing Server

In xrootd files exist to the extent servers exist
The redirector cushions this effect for 10 minutes
The time is configurable, but...

• Afterwards, the redirector cannot tell the difference

This allows partially dead server clusters to continue

- Jobs hunting for "missing" files will eventually die
- But jobs cannot rely on files actually being missing

xrootd cannot provide a definitive answer to "∀ s: ¬∃ file x"
 This requires additional care during file creation
 Issue will be mitigated in next release

• Files that persist only when successfully closed

Getting to xrootd hosted data

Via the root framework

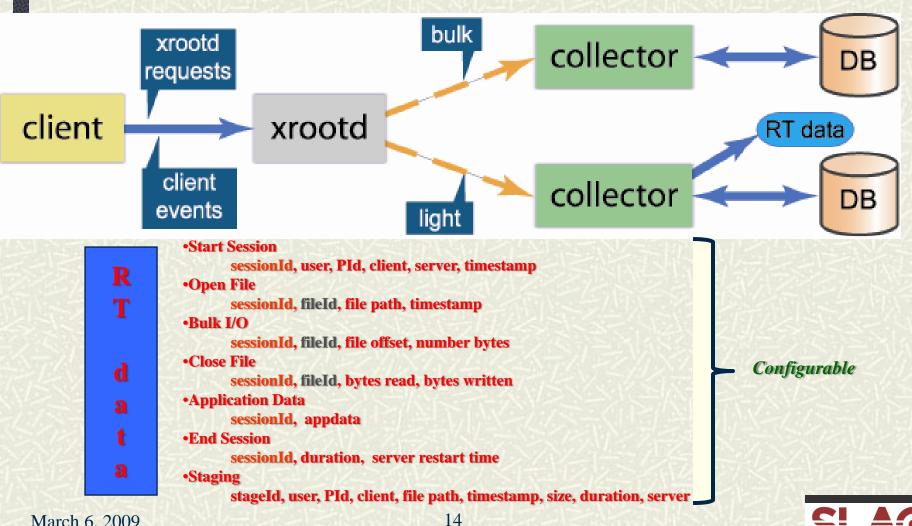
- Automatic when files named root://....
- Manually, use TXNetFile() object
 - Note: identical TFile() object will not work with xrootd!
- # xrdcp
 - The native copy command
- **#** SRM (optional add-on)
 - srmcp, gridFTP
- # FUSE
 - Linux only: xrootd as a mounted file system
- **#** POSIX preload library
 - Allows POSIX compliant applications to use xrootd

The Flip Side of Things

File management is largely transparent Engineered to be turned on and pretty much forget **#** But what if you just need to know Usage statistics Who's using what Specific data access patterns The big picture A multi-site view

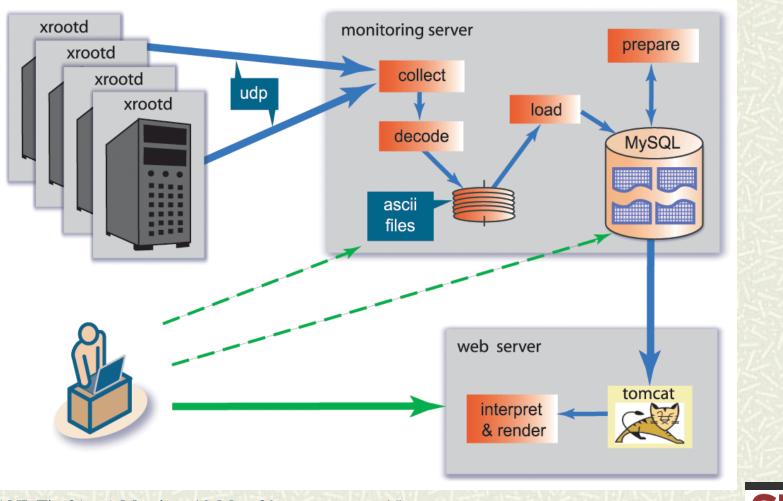
Xrootd Monitoring Approach

- Minimal impact on client requests
- Robustness against multimode failure
- Precision & specificity of collected data
- **#** Real time scalability



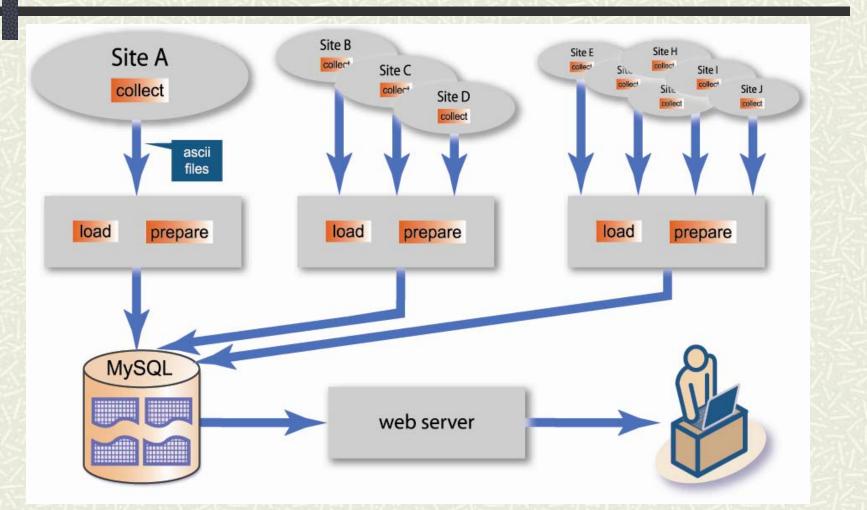
Use UDP datagrams

- Data servers insulated from monitoring. But
- Packets can get lost
 Highly encode the data stream
 Outsource stream serialization
 Use variable time buckets

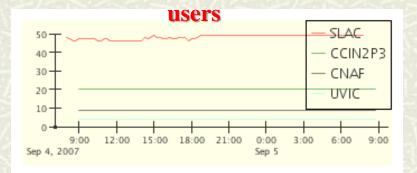


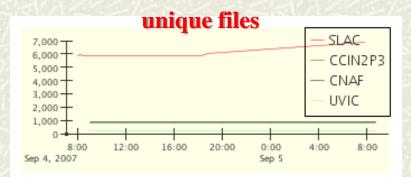
Monitored Data Flow

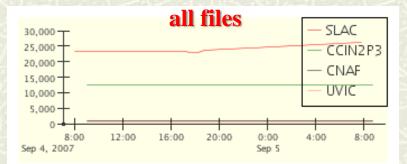
March 6, 2009


Single Site Monitoring

ANL Tier3(g,w) Meeting 19-May-09


15


Multi-Site Monitoring



Basic Views

Detailed Views

Table rows:	5	-	Time Period:	Last Hour	-	Site:	SLAC -	Update

Top active users								
		Now		Last Hour				
User Name	Number of Jobs	Number of Files	File Size [MB]	Number of Jobs	Number of Files	File Size [MB]	MB Read	
ayarritu	615	<u>139</u>	65,987	430	146	65,802	41,360	
jregens	360	405	371,874	<u>64</u>	317	303,252	143,852	
cschill	281	32	27,133	<u>79</u>	30	25,301	4,892	
feltresi	149	106	167,528	70	143	218,873	74,552	
torsten	72	<u>99</u>	83,673	184	1,532	630,092	235,327	

dataType Name		N	ow		Last Hour					
	Number of Jobs	Number of Files	File Size [MB]	Number of Users	Number of Jobs	Number of Files	File Size [MB]	Number of Users	MB Read	
SPskims	998	739	632,651	11	663	340	304,938	<u>6</u>	120,728	
SP	652	1,839	1,961,610	<u>12</u>	981	506	474,819	7	159,512	
PRskims	93	<u>650</u>	811,152	7	204	83	107,807	2	62,265	
<u>PR</u>	66	600	453,640	<u>6</u>	265	1,454	525,498	<u>3</u>	174,754	
<u>cfg</u>	0	0	0	0	8	1	7	1	10	

skim Name		N	w		Last Hour					
	Number of Jobs	Number of Files	File Size [MB]	Number of Users	Number of Jobs	Number of Files	File Size [MB]	Number of Users	MB Read	
BtoRhoGamma	<u>591</u>	139	65,987	1	458	146	65,802	<u>1</u>	41,360	
DstToD0PiToVGamma	262	86	33,138	1	70	<u>41</u>	16,171	1	4,668	
BToDinu	115	118	186,026	2	125	145	222,200	2	74,568	
AllEvents	76	394	508,309	3	210	84	108,365	3	62,268	
Tau11	4	95	130,103	1	3	<u>6</u>	149	<u>0</u>	127	

Hottest files								
		Now	Last I	lour				
File Path	File Size [MB]	Number of Jobs	Number of Jobs	MB Read				
/store/PRskims/R18/18.6.3d/AllEvents/00/AllEvents 20006.04HB.root	1,690	2	15	1,630				
/store/PRskims/R18/18.6.3e/AllEvents/05/AllEvents 20502.04HB.root	1,688	1	17	1,636				
/store/PRskims/R18/18.6.3e/AllEvents/05/AllEvents 20502.01.root	1,689	1	17	1,635				
/store/PRskims/R18/18.6.3e/AllEvents/05/AllEvents 20500.03HB.root	1,688	1	19	1,641				
/store/PRskims/R18/18.6.3e/AllEvents/05/AllEvents 20500.01.root	1,689	1	19	1,640				

Top Performers Table

Per User Views

User Information

Now		Last Hour				
Number of Running Jobs	<u>203</u>	Number of Finished Jobs	<u>831</u>			
		Total Duration of all Jobs [DAY HH:MM:SS]	74 16:46:57			
Number of Open Sessions	388	Number of Closed Sessions	1,865			
Number of Open Files	<u>146</u>	Number of Accessed files	<u>1,241</u>			
		Volume of Data Read [MB]	719,109			
		Volume of Data Written [MB]	0			
Number of Client Hosts in Use	<u>157</u>	Number of Client Hosts Used	<u>593</u>			
Number of Server Hosts in Use	<u>44</u>	Number of Server Hosts Used	<u>50</u>			

What's Missing

Integration with common tools
Nagios, Ganglia, MonaLisa, etc.
Better Packaging
Simple install
Better Documentation
Working on proposal to address the issues

The Good Part I

Xrootd is simple and easy to administer

- E.g.: BNL/Star 400-node cluster $\rightarrow 0.5$ grad student
- No 3rd party software required (i.e., self-contained)
 - Not true when SRM support needed
- Single configuration file independent of cluster size
- **#** Handles heavy unpredictable loads
 - E,g., >3,000 connections & >10,000 open files
 - Ideal for batch farms where jobs can start in waves
- **#** Resilient and forgiving
 - Configuration changes can be done in real time
 - Ad hoc addition and removal of servers or files

The Good Part II

Ultra low overhead

- Xrootd memory footprint < 50MB</p>
 - For mostly read-only configuration on SLC4 or later
 - Opens a wide range of deployment options

High performance LAN/WAN I/O

- CPU overlapped I/O buffering and I/O pipelining
 - Well integrated into the root framework
 - Makes WAN random I/O a realistic option
- Parallel streams and optional multiple data sources
 Torrent-style WAN data transfer

The Good Part III

Wide range of clustering options Can cluster geographically distributed clusters Clusters can be overlaid Can run multiple xrootd versions using production data **#** SRM V2 Support Optional add-on using LBNL BestMan **#** Can be mounted as a file system ■ FUSE (SLC4 or later) Not suitable for high performance I/O **#** Extensive monitoring facilities

The Not So Good

Not a general all-purpose solution Engineered primarily for data analysis Not a true full-fledged file system Non-transactional file namespace operations ■ Create, remove, rename, etc • Create mitigated in the next release via ephemeral files **#** SRM support not natively integrated Yes, 3rd party package **#** Too much reference-like documentation More tutorials would help

Conclusion

Xrootd is a lightweight data access system Suitable for resource constrained environments Human as well as hardware Rugged enough to scale to large installations CERN analysis & reconstruction farms **#** Readily available Distributed as part of the OSG VDT Also part of the CERN root distribution **#** Visit the web site for more information http://xrootd.slac.stanford.edu/

Acknowledgements

Software Contributors

- Alice: Derek Feichtinger
- CERN: Fabrizio Furano, Andreas Peters
- Fermi/GLAST: Tony Johnson (Java)
- Root: Gerri Ganis, Beterand Bellenet, Fons Rademakers
- SLAC: Tofigh Azemoon, Jacek Becla, Andrew Hanushevsky, Wilko Kroeger
- LBNL: Alex Sim, Junmin Gu, Vijaya Natarajan (BestMan team)
- **#** Operational Collaborators
 - BNL, CERN, FZK, IN2P3, RAL, SLAC, UVIC, UTA
- # Partial Funding
 - US Department of Energy
 - Contract DE-AC02-76SF00515 with Stanford University

