
Sunday, May 17, 2009

Have to analyze it

3 PetaBytes of data/year

keep that up for 2 decades.

Tier 3 Task Force Summary

Chip Brock, Michigan State University

Doug Benjamin, Duke University,

Gustaaf Brooijmans, Columbia,

Sergei Chekanov, Argonne National Laboratory,

Jim Cochran, Iowa State University,

Michael Ernst, Brookhaven National Laboratory,

Amir Farbin, University of Texas at Arlington,

Marco Mambelli, University of Chicago

Bruce Melado, University of Wisconsin,

Mark Neubauer, University of Illinois,

Flera Rizatdinova, Oklahoma State University,

Paul Tipton, Yale University,

Gordon Watts, University of Washington,

Chip Brock, Michigan State University

charge: 1. Use Cases.

- Typical workflows for physicists analyzing ATLAS data from their home institutions should be enumerated. This needs to be inclusive, but not in excruciating detailed.
- It should be defined from within the ATLAS computing/analysis models, the existing sets of T2 centers, and their expected evolutions.
- If there are particular requirements in early running, related to detector commissioning and/or special low-luminosity considerations, this should be noted.
- ► If particular ATLAS institutions have subsystem responsibilities not covered by the existing T1/2 deployment, this should be noted.
- ► Is the previous whitepaper relevant?

charge: 2. Characterization of generic T3 configurations.

- Some T3's may be very significant because of special infrastructure availabilities and some T3's maybe relatively modest.
- Is there only 1 kind of T3 center, or are their possible functional distinctions which might characterize roles for some T3's that might not be necessary for others?
- Description of "classes" of T3 centers, if relevant, should be made.
- Support needs and suggestions for possible support models should be considered.

charge: 3. Funding.

- This is not part of the US ATLAS Operations budget, so funding must come out of the institutes through core funding or local sources. We would like to make it easier for institutes to secure funding for ATLAS computing—this can only happen if it fits in the DOE and NSF budgets (precedent: the amount of funding groups got for computing equipment in Tevatron experiments) and it must fit in the overall US ATLAS model.
- For the latter, we have to make the case that the existing T1/2 centers are not enough.
- Perhaps a recommendation can be justified for an estimated \$ amount needed for a viable Tier 3 cluster -- something like X + n*Y \$'s where n = number of active physicists.

this task force is two things

A large document

intentionally written for multiple audiences:

geeky ATLAS people, sure; ATLAS physicists who are only just contemplating computing at home; technical, non-physicists, and certainly, agency folks

A set of comments

"observations"

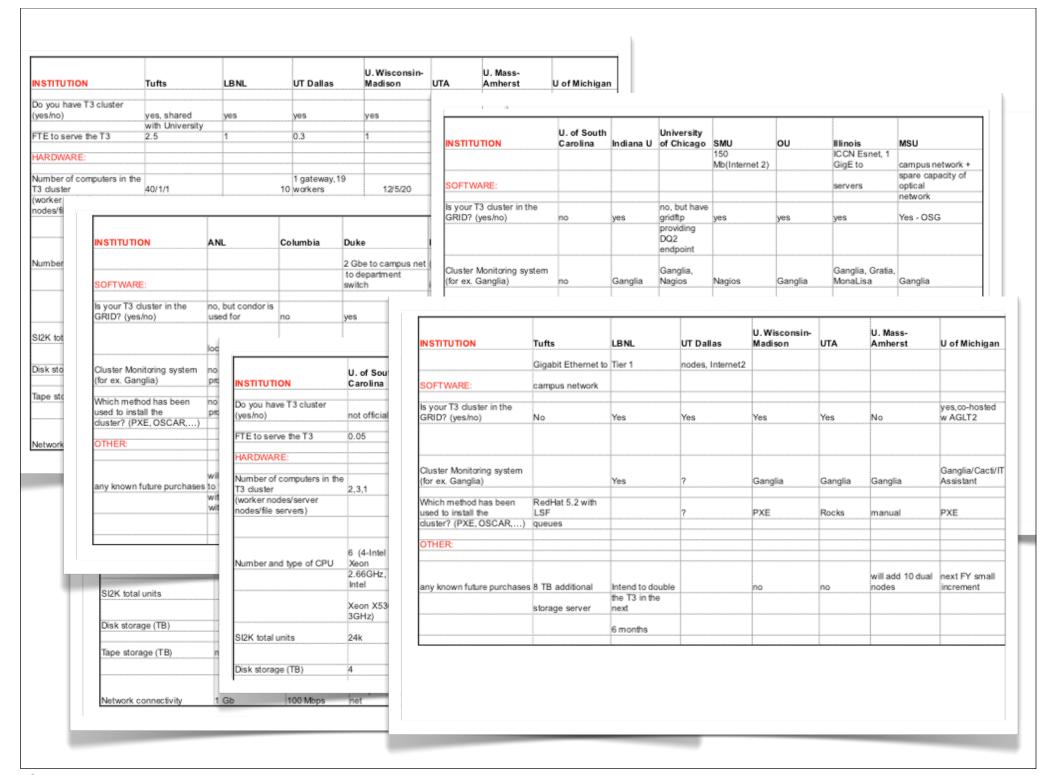
"recommendations"

the document

meant to be complete:

a reference

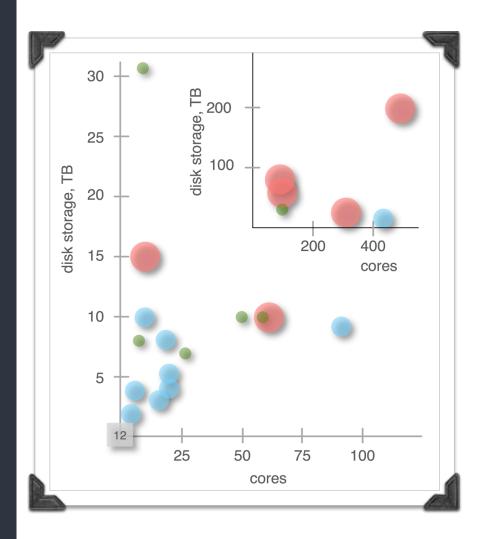
U.S. ATLAS Tier 3 Task Force

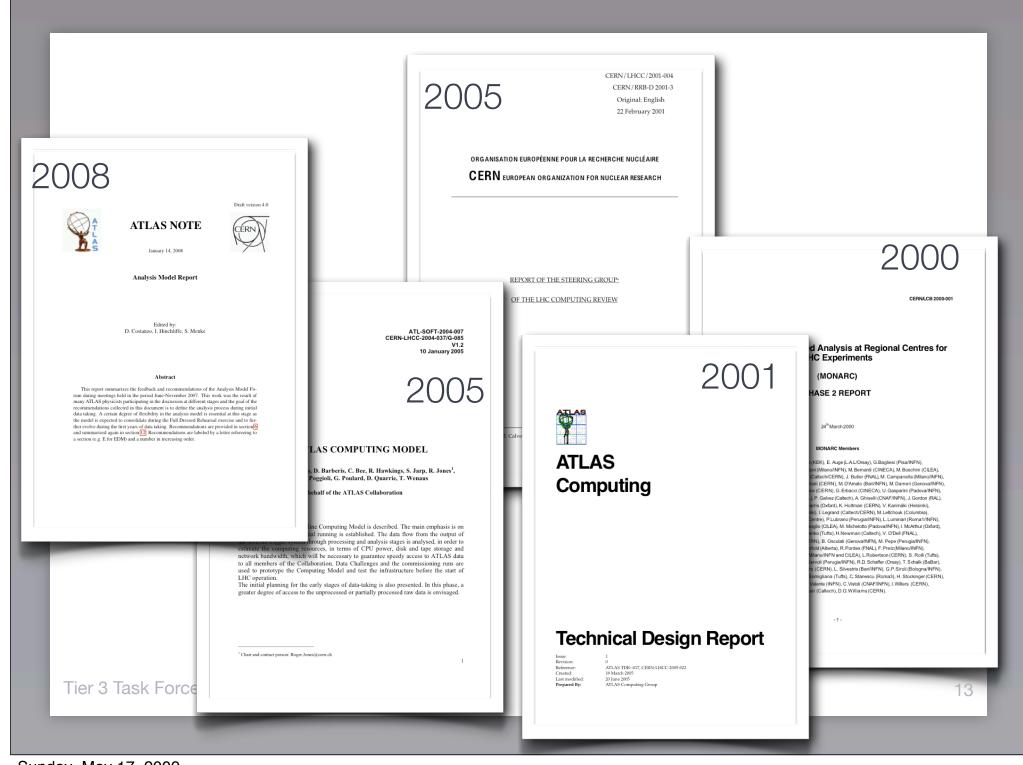

March 27, 2009

Raymond Brock^{1*}, Doug Benjamin^{2**}, Gustaaf Brooijmans³, Sergei Chekanov^{4**}, Jim Cochran⁵, Michael Ernst⁶, Amir Farbin⁷, Marco Mambelli^{8**}, Bruce Mellado⁹, Mark Neubauer¹⁰, Flera Rizatdinova¹¹, Paul Tipton¹², and Gordon Watts¹³

¹Michigan State University, ² Duke University, ³Columbia University, ⁴Argonne National Laboratory, ⁵Iowa State University, ⁶Brookhaven National Laboratory, ⁷University of Texas at Arlington, ⁸University of Chicago, ⁹University of Wisconsin, ¹⁰University of Illinois, ¹¹Oklahoma State University, ¹²Yale University, ¹³University of Washington *chair, **expert member

Sunday, May 17, 2009




Tier 3s today.

Survey:

33 ATLAS university institutes

dot size/color: network connectivity: 100Mbps, 1Gbps, 10Gbps

information is scattered: Integrated Digital Conference

Recommendation 9: ATLAS computing and analysis policies, existing resource amounts, targeted resource quantities, data format targets, times for data reduction, etc.: basically all parameters and rules should be in one place. A policy should be considered "official" only when updated at a single twiki page. One repository should define official reality and should be updated when that reality changes. (page 9)

Recommendation 9

What would a task force be without a plea regarding documentation?

computing & analysis models

tied to the data formats

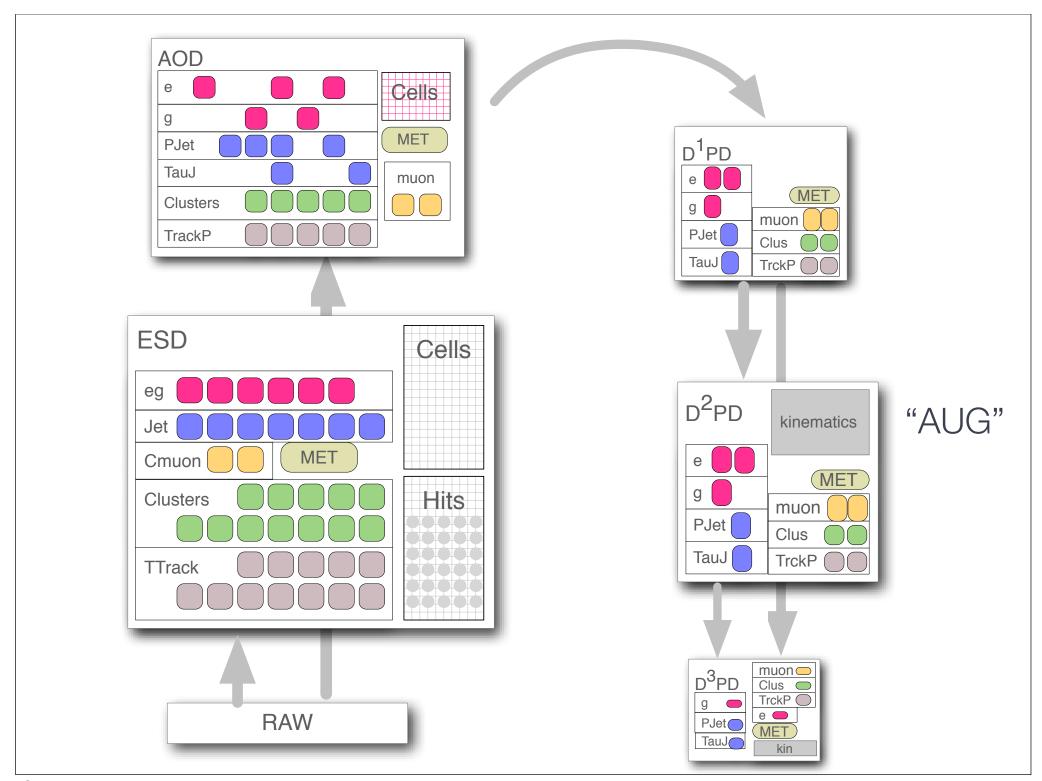
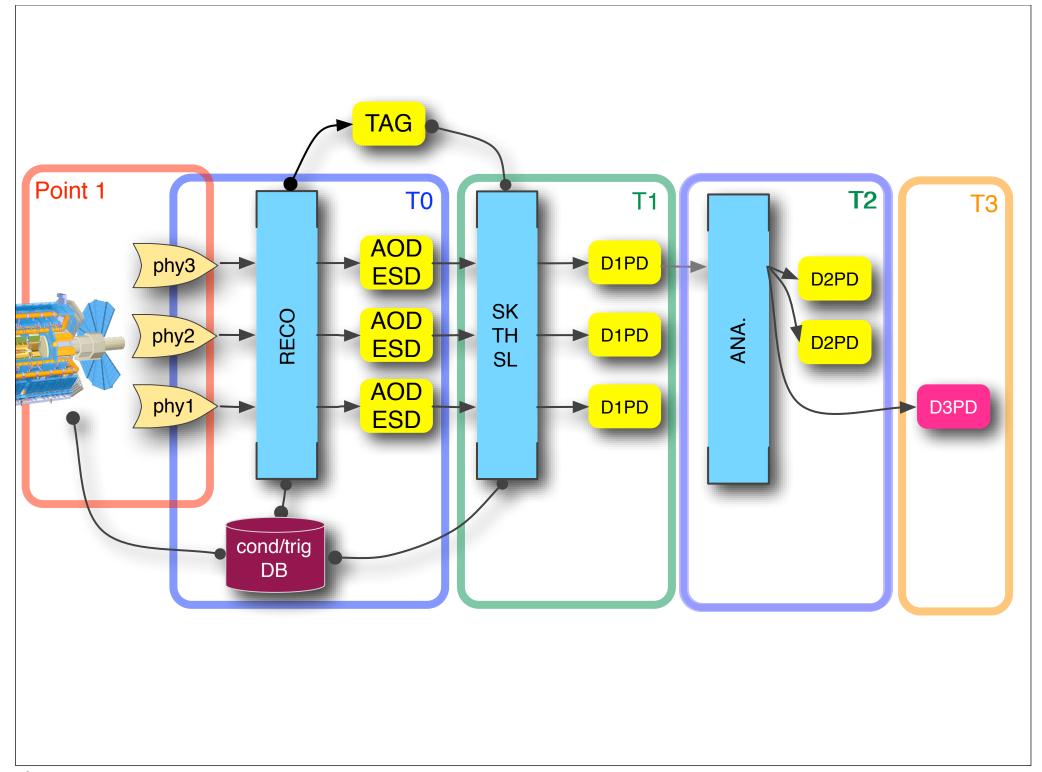


Table 3: Data formats for ATLAS and quantities used in this analysis.

Format	Target Range	Current	Used	1 Year Dataset
RAW	1.6 MB		1.6 MB	1600 TB
ESD	0.5 MB	0.7 MB	0.5 MB	500 TB
MC ESD	0.5 MB		0.5 MB	500 TB
AOD	0.1 MB	0.17 MB	0.150 MB	100 TB
TAG	1 kB		1 kB	1 TB

Table 6: DPD formats and size estimates. N.B. The DPD current amounts are from [15] and are approximations to FDR $t\bar{t}$ data and are just presented as a snapshot and not to be taken literally.

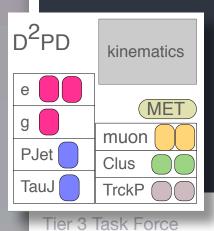

Format	Target Range	Current	Used	1 Year Dataset
	$1/4 \times AOD$	31 kB	25 kB	25 TB
D^2PD	$1.1 \times D^1PD$	18 kB	30 kB	30 TB
D^3PD	$1/3 \times D^{1}PD$	5 kB	6 kB	6 TB
pDPD	?	NA	?	?

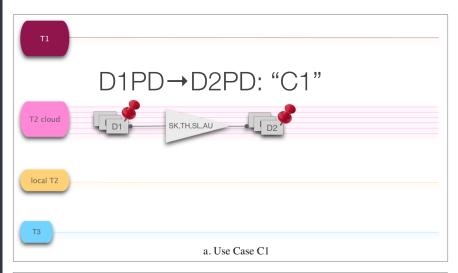
that's a lot of data

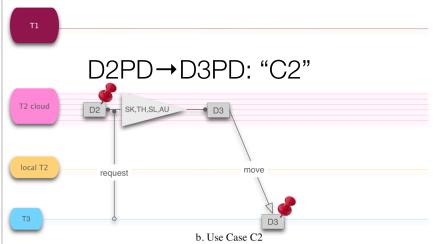
that's a lot of formats

ATLAS data come in all shapes and sizes

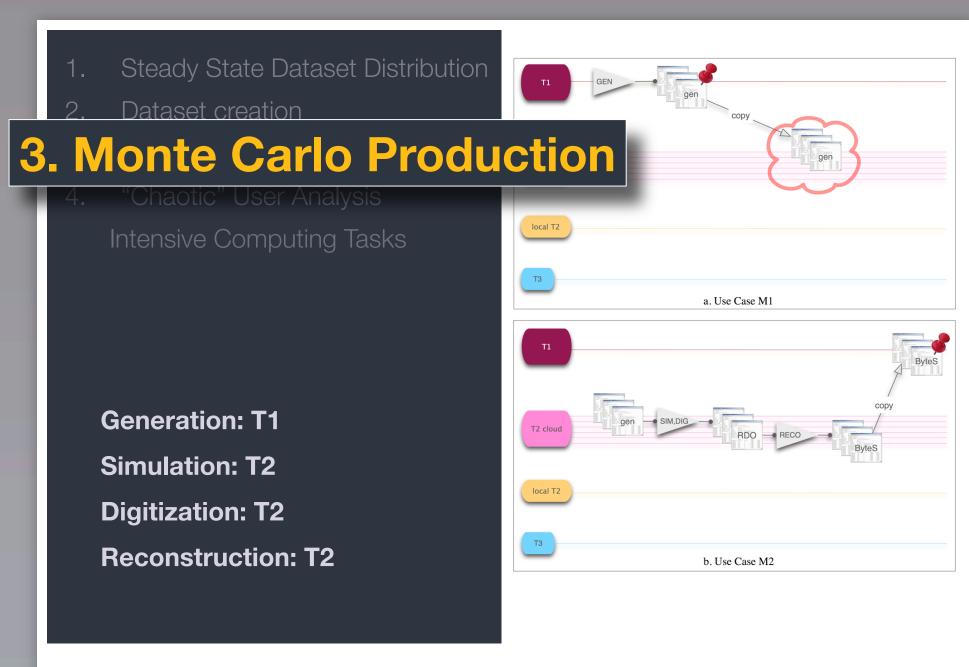
where are they made? where are they stored? Not wholly determined yet.

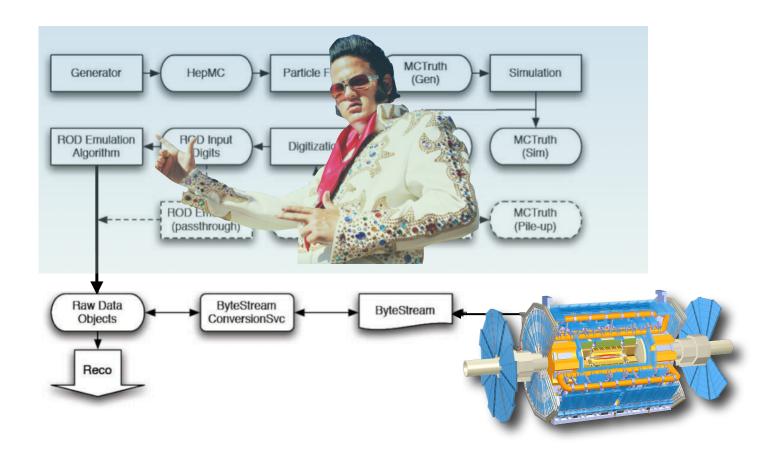

tried to identify various workflows


- 1. Steady State Dataset Distribution
- 2. Dataset creation
- 3. Monte Carlo Production
- 4. "Chaotic" User Analysis ("Chaotic User" Analysis?)
- 5. Intensive Computing Tasks

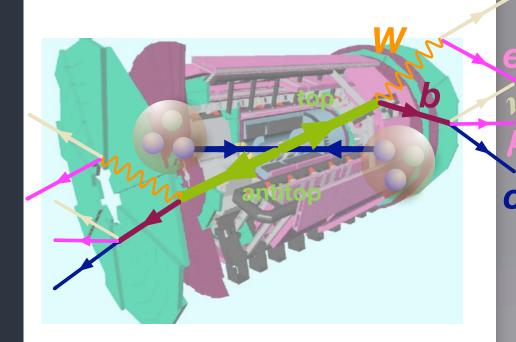

1 - Steady State Dataset Distribution

2. Dataset creation


- Monte Carlo Production
- "Chaotic" User Analysis
 Intensive Computing Tasks



21


MC Impersonations look like data

simulation: computationally expensive

Generation

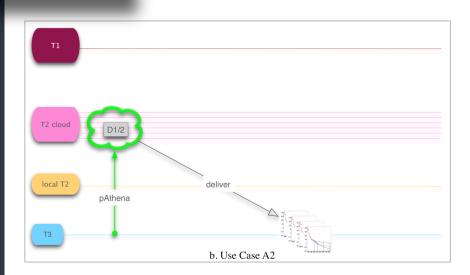
Simulation

Digitization

Sample Minimum Bias	Generation 0.0267	Simulation 551.	Digitization 19.6
tt Production	0.226	1990	29.1
Jets	0.0457	2640	29.2
Photon and jets	0.0431	2850	25.3
$W^\pm o e^\pm u_e$	0.0788	1150	23.5
$W^\pm o \mu^\pm u_\mu$	0.0768	1030	23.1
Heavy ion	2.08	56,000	267
kSI2k-s!			

- 1. Steady State Dataset Distribution
- Dataset creation
- 3. Monte Carlo Production

4. "Chaotic" User Analysis


intensive Computing Tasks

"analysis" is not a single thing in modern HEP experiments:

repetitive skimming, selection

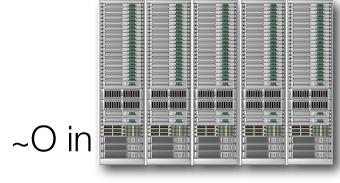
human-intensive data-handling

because file transfers fail,
networks fail, mistakes are made

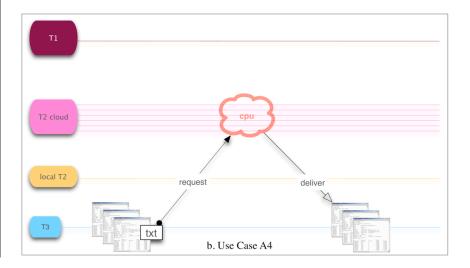
N.B.

intensive calculations

Matrix Element calculations


many cpu-centuries of computation

grid has failed DØ for these


Multivariate combinations

COLLIE

Ensemble simulation

~O out

this is important:

Nobody had ever dreamed of these sorts of analysis tasks before this century

What kinds of surprises will the ATLAS era see?

history is our only source of data

28

history = Fermilab tevatron

DØ and CDF: re-invented computing models many times

emerging technologies

made unanticipated, clever analyses possible

unanticipated, clever analyses

made extending technologies essential

neither of these are necessarily consistent with tight resource planning

- the world changed many times in the lifetime of the Tevatron
- 1. ubiquity of OO coding
- 2. emergence of inexpensive, commodity computer clusters
- 3. availability of distributed disk servers and management systems
- 4. development of high-speed networking and switching technologies
- 5. the Web, from cute to essential

prediction is hard

"I believe OS/2 is destined to be the most important operating system, and possibly program, of all time."

Bill Gates, OS/2 Programmers Guide, November 1987

	1997 projections	2006 actual
Peak (average) data rate (Hz)	50 (20)	100(35)
Events collected	600M/year	1500M/year
Raw Data Size (kB.event)	250	250
Reconstructed Data size(kB/event)	100	80
User format (kB/event)	1	40
Tape Storage	280 TB/year	1.6 PB on tape
Tape reads/writes (weekly)		30 TB/7TB
Analysis/cache disk	7 TB/year	220 TB
Reconstruction time (GHz-s/event)	2.0	50
User analysis times (GHz-s/event)	?	1
User analysis weekly reads	?	3B events
Primary reconstruction farm size (THz)	0.6	2.4 THz
Central analysis farm size (GHz)	0.6	2.2 THz
Remote resources (GHz)	?	\sim 2.5THz
	after	after Run 2a

flexible and nimble

we have to plan for revolutions

is not remote

it's interactive...because things don't always work

Observation 1 Challenges to efficient LHC physics analysis are likely to be greater than imagined and so "flexible" and "nimble" should continue to be the guiding principles in the design of computing infrastructure.

Observation 2 Physicists often reduce dataset sizes in order to bring as much data, as near to their desktop as is feasible, as often as is required.

We could argue about whether this is according to the liturgy...but it will happen, one way or the other.

observations

All of this argues for the deepest possible computing architecture.

Tier 3 Task Force

Sunday, May 17, 2009

Tier 2's are the heroes of ATLAS

But:

Are they physicist-innovation-capable?

Can they really handle the sort of human-intense load that will be likely?

Will physicists still try to move data near to them?

Will they be available?

Tier 2 resources

▶ 50%, centrally managed for simulation

> 50%

for national analyses

► How much full simulation?

 $30\% \rightarrow 20\% \rightarrow 10\%$

US Pledge to wLCG	2007	2008	2009	2010	2011
CPU (kSI2k)	2,560	4,844	7,337	12,765	18,194
Disk (TB)	1,000	3,136	5,822	11,637	16,509
Tape (TB)	603	1,715	3,277	6,286	9,820

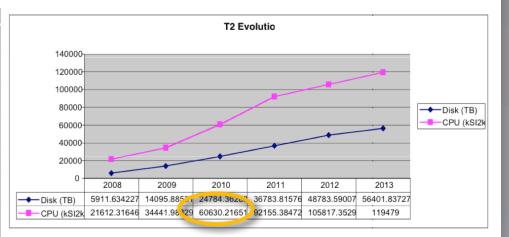

Sample	Generation	Simulation	Digitization	Reconstruction
Minimum Bias	0.0267	551.	19.6	8.06
$t\bar{t}$ Production	0.226	1990	29.1	47.4
Jets	0.0457	2640	29.2	78.4
Photon and jets	0.0431	2850	25.3	44.7
$W^\pm o e^\pm u_e$	0.0788	1150	23.5	8.07
$W^\pm o \mu^\pm u_\mu$	0.0768	1030	23.1	13.6
Heavy ion	2.08	56,000	267	-

Table 18. in kSI2k-s, without pileup

K. Assamagan, et al., ATLAS Monte Carlo Project, 2009.

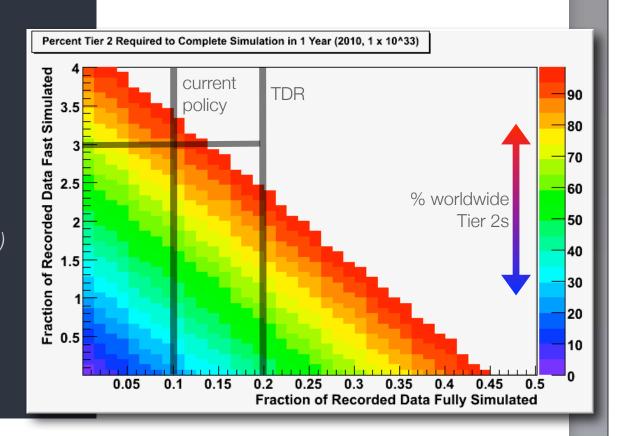
Benchmark: $10fb^{-1} \rightarrow 2010 \rightarrow 2x10^{33} \rightarrow 3.5$

quantity	value used	high	low	comments
LHC year	2010	2011	n.a.	assume 2008 start
Ins. \mathcal{L} cm ⁻² s ⁻¹	2×10^{33}	3.5×10^{33}	10 ³³	Garoby, LHCC 08
annual				rounded
$\int \mathcal{L}dt \text{ fb}^{-1}$	10	?	?	from 12
annual				
dataset	2×10^9 events	?	?	[7]
sim. time	1990 kSI2K s	2850 kSI2K s	1030 kSI2K s	[16]
	$(t\bar{t})$	γj	$W \rightarrow \mu$	
dig. time	29.1 kSI2K s	29.2 kSI2K s	23.1kSI2K s	[16]
	$(t\bar{t})$	j	$W \rightarrow \mu$	
reco. time	47.4 kSI2K s	78.4 kSI2K s	8.07 kSI2K s	[16]
	$(t\bar{t})$	j	$W \rightarrow e$	
digitization				
pileup factor	3.5	5.8	2.3	[16]
fraction of				
full dataset				
for full sim	0.1	0.2	na.	
factor rel.				
to full sim.	0.05	0.38	0.004	[16]
for $t\bar{t}$	(ATLFAST-II)	(fG4)	(ATLFAST-IIF)	
$D^1PD \rightarrow D^2PD$	0.5 kSI2K s	?	?	[15]
$D^2PD \rightarrow D^3PD$	0.5 kSI2K s	?	?	[15]
disk R/W	100 MBps	200 MBps	10 MBps	S. McKee
				private
sustained	50 MBps	100 MBps	10 MBps	S. McKee
network				private
fraction of data				
in pDPD	20%			
# primary DPD	10			
# subgroups	5			
average CPU	1.4 kSI2K units	2	NA	
total ATLAS				
Tier 2 computing	60.63MSI2k			[11]

modeled it.

Amir Farbin...heroic calculation

Tier 2 simulation for one year


horizontal axis:

fraction fully simulated

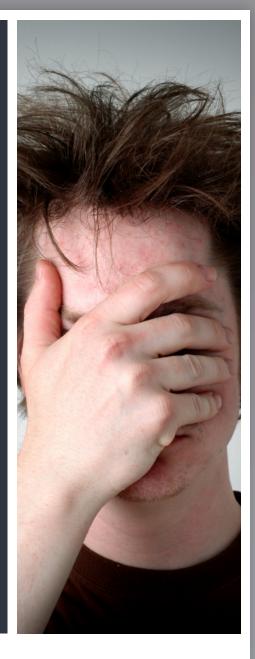
vertical axis:

fraction fast-simulated

(ATLFAST-II...from Assamagan)

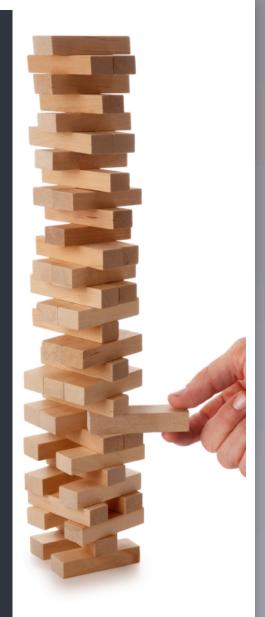
look. scientific computing planning is hard

Administrators

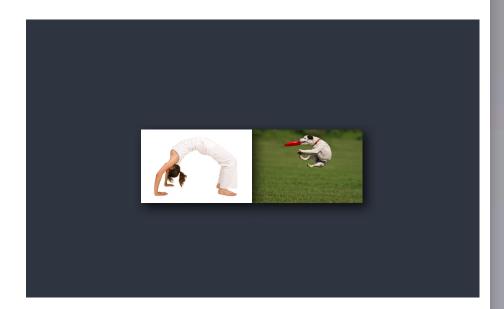

argue for funds against a plan

Users-have one thing in mind

not great about sticking to a plan


Physics analysis moves

faster than the best computing plans.


a U.S. computing model totally reliant on Tier 2s seems like a risk:

- 1. The Tier 2s may become overloaded.
- 2. History tells us to expect the unexpected.
- 3. ...stuff will happen.

Observation 4 The Tier 2 systems' responsibilities are tremendously significant. Should we discover an underestimate in CPU, storage, or network needs of ATLAS as a whole, the analysis needs of U.S. university physics community will be adversely affected.

Observation 5 Is there any reason to think that the first 20 years of the ATLAS computing experience will be any less astonishing? Is it wise to design tightly to current expectations, as if the future will be a continuous extrapolation of the present? If history is at all a reliable guide, it argues for the most flexible, most modular, and least rigidly structured systems consistent with 2008 technology and budgets.

Minimum necessary requirements

Recommendation 1: With past history as a guide and with prudent concern for the challenge and uncertainties of ATLAS analysis, the *structured* U.S. ATLAS computing infrastructure should be deeper than the Tier 2 centers. A flexible and nimble infrastructure would include strategically extending some data production, Monte Carlo simulation, and analysis into the U.S. ATLAS Tier 3 sector. (page 70)

Recommendation 1

Recommendation 2: The strategy for building a flexible U.S. ATLAS Tier 3 system should be built around a mix of 4 possible Tier 3 architectures: T3gs, T3g, T3w, and T3af. Each is based on a separate architecture and each would correspond to a group's infrastructure capabilities. Each leverages specific analysis advantages and/or potential ATLAS-wide failover recovery. They are specifically defined in Section 7.1.2. (page 72)

Recommendation 2

4 Specific classes of Tier 3s

a vocabulary, a set of identifiable targets for groups' evolution

The "Tier 3 Quartet"

- 1. "T3gs": a center with full grid services

 likely a significant center with infrastructure in place

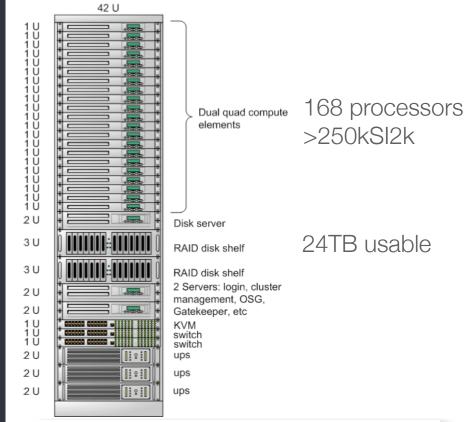
 local resource control, but production-capable T2 failover capability
- 2. "T3g": a cluster with grid connectivity
 "tower cluster", no cooling/power infrastructure (ANL Model)
 or a rack-based model (Duke Model)
- 3. "T3w": individual, personal workstations

 RootTuple analyses, grid submission
- 4. "T3af": within the confines of a an analysis facility

 like the "CDF model" at Fermilab: fair-share computing in exchange for contribution

- 2. "T3g'
- 3. "T3w"
- 4. "T3af"

Tier 3 with "grid services"


a campus-based, significant cluster requiring AC/power infrastructure

Characterized a strawman

~\$80k

University of Illinois building one

Tier 3 Task Force

component	typical model	quantity	unit cost, k\$
UPS	DELL	3	1.0
switch	DELL PowerConnect	2	1.5
	48GbE, portmanaged		
servers	DELL PE2950	3	4.2
	E5440 processor, 2.83GHz,		
	32GB RAM, 250GB drive		
compute	DELL PE1950	21	2.4
elements	E5440 processor, 2.83GHz,		
	16GB RAM, 250GB drive		
storage	DELL MD1000	2	5.4
elements		(24TB,	
		usable)	
KVM	Belkin	1	1.3
rack			1
total cost			\$82.1k

46

T3gs use cases, enhanced

Production: Physics Group D2PD from cached D1PD

assume a full stream

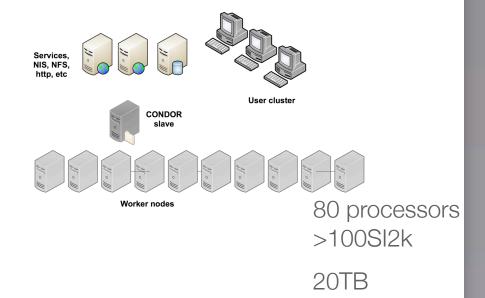
few days to produce

Monte Carlo Production: in support of a physics group

ttbar-sample appropriate to the 10fb benchmark

sample-sized, signal + background, ATLFAST-II

few days


- 1. "T3gs"
- 2. "**T3g**"
- 3. "T3w"
- 4. "T3af"

Tier 3 with "grid" connectivity a campus-based, tower or rack-based cluster minimal services required

Characterized a strawman

~\$25k

ANL and Duke are building them

component	typical model	quantity	unit cost, k\$
switch	Cisco 1GB	1	2.5
worker towers	Intel-based E5410	10	2.0
	2.33GHz, 2 TB storage		
	8GB RAM		
server	DELL PE1950	4	0.5
elements	E5440 processor, 2.83MHz,		
	16GB RAM, 250GB drive		
total cost			\$24.5k

the data

In a world where even roottuples will be TB's access to the data is crucial at a Tier 3gs and T3g

Recommendation 3: In order to support a Tier 3 subscription service, without a significant support load or the need to expose itself to the ATLAS data catalog, a particular DQ2 relationship must be established with a named Tier 2 center, or some site which can support the DQ2 site services on its behalf. This breaks the "ubiquity" of Tier 2s — here, a particular Tier 3 would have a particular relationship with a named Tier 2. This dual-capability (limited exposure of a site's file catalog and a subscription-like functionality) has been colloquially referred to as "outsourcing" DQ2 site services.

Recommendation 3

must be able to subscribe to large datasets cannot move TBs by hand...

Recommendation 4: U.S. ATLAS should establish a U.S. ATLAS Tier 3 Professional, a system administration staff position tasked to 1) assist in person the creation of any Tier 3 system; 2) act as a named on-call resource for local administrators; and 3) to lead and moderate an active, mutually supportive user group. (page 85)

Recommendation 4

Support is a serious issue for many

but worth the investment if it makes T3g's possible

Recommendation 5: In order to qualify for the above U.S. ATLAS Tier 3 support, U.S. ATLAS Tier 3 institutions must agree to 1) supply a named individual responsible on campus for their system and 2) adhere to a minimal set of software and hardware requirements as determined by the U.S. ATLAS Tier 3 Professional. (page 85)

Recommendation 5

quid pro quo

to keep the support personnel sane

2 Technical Recommendations

Service modifications to Panda

Focus on point-to-point communications

Tier 3 Task Force

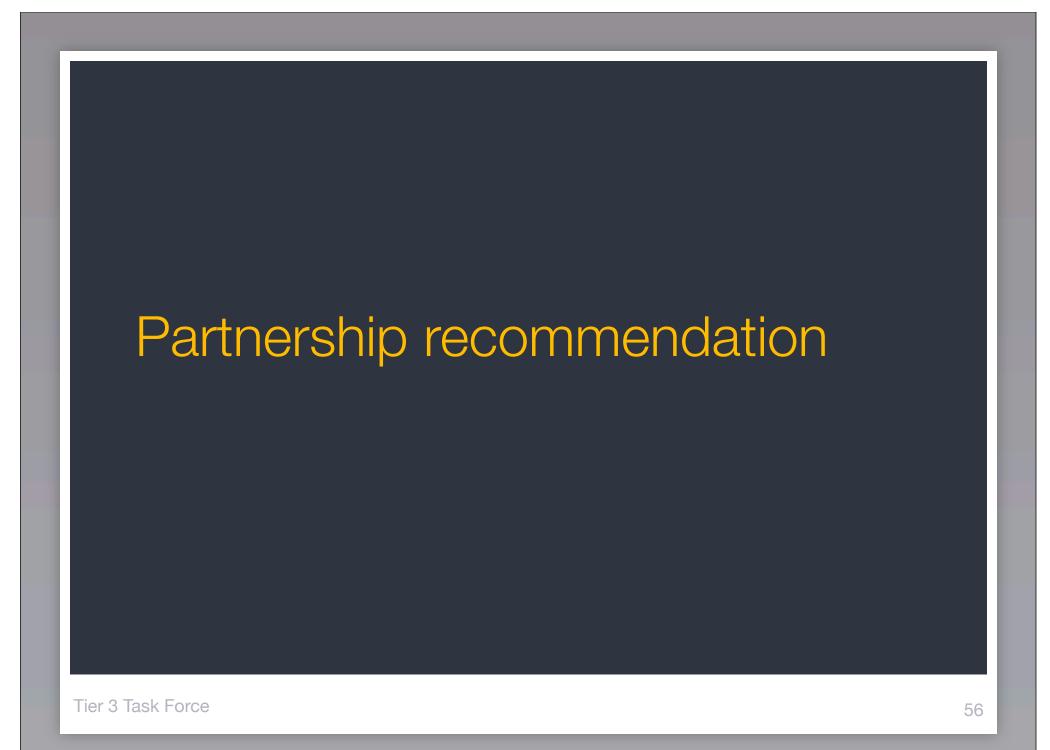
53

Recommendation 6: We recommend that the recent addition of pAthena local control-functionality be maintained, and possibly extended to allow for more convenient control and access/monitoring of the Tier 3 site configuration by local administrators. (page 87)

Recommendation 6

With a switch - same interface for local and T1/2 pAthena services

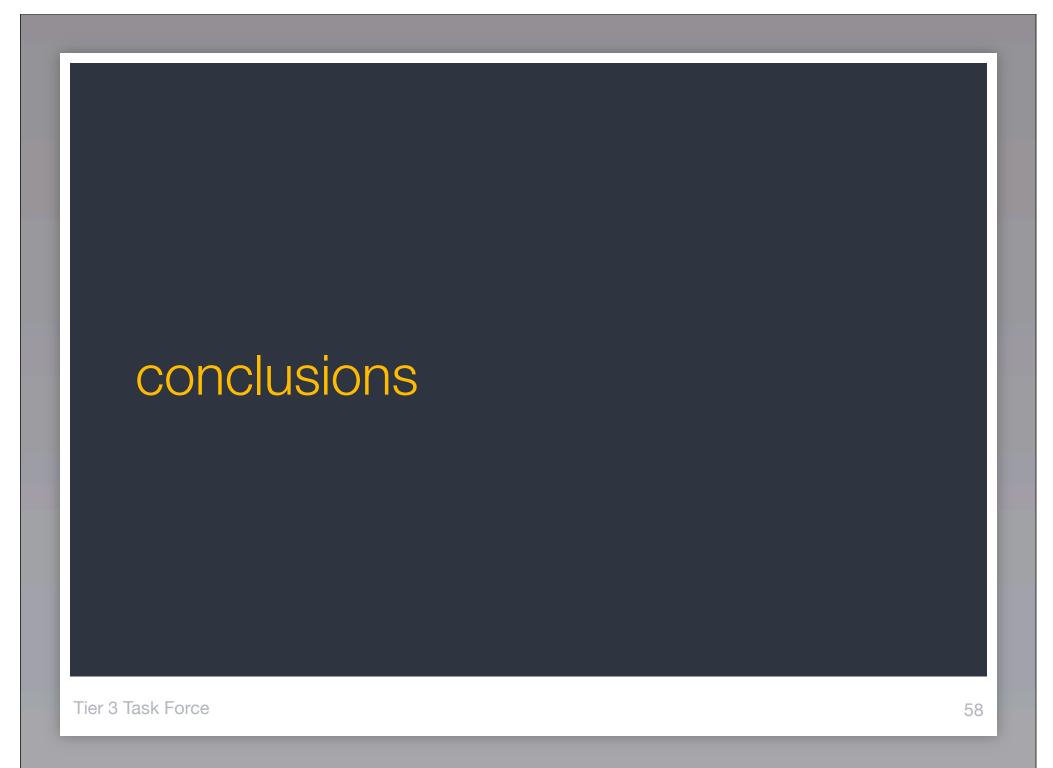
Recommendation 7: Sustained bandwidth of approximately 20MBps is probably required for moving TB sized files between Tier 2 and Tier 3 locations and it should be the goal that every campus or lab group establish such capability within a few years. This requires a high level of cooperation and planning among U.S. ATLAS computing, national network administrators, and campus administrators. Note: it might be useful and prudent to tune bandwidth between particular Tier 3 locations and particular Tier 2 centers rather than to set a national standard which might be difficult to meet. Note that the Resource Allocation Committee will have authority over the large-scale movement of data and any large scale caching of Tier 3 generated files into the Tier 1 or Tier 2 clouds.

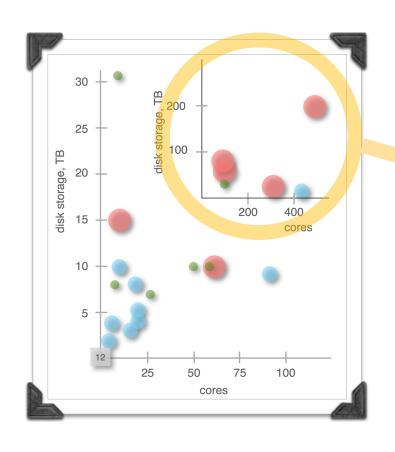

Recommendation 7

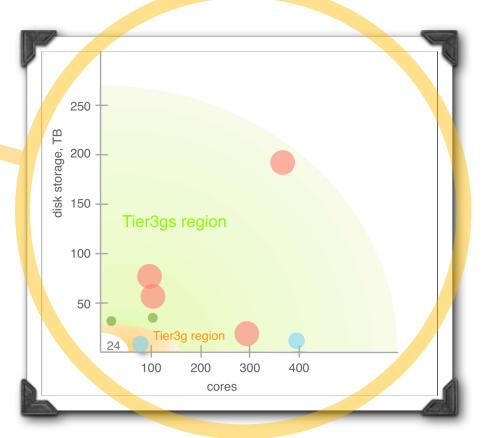
Rough goal:

1-2TB transfers **point-to-point** in a ~day

EPISODIC!




Recommendation 8: Enhancement of U.S. ATLAS institutions' Tier 3 capabilities is essential and should be built around the short and long-term analysis strategies of each U.S. group. This enhancement should be proposal-based and target specific goals. In order to leverage local support, we recommend that U.S. ATLAS leadership create a named partnership or collaborative program for universities which undertake to match contributions with NSF and DOE toward identifiable U.S. ATLAS computing on their campuses. Public recognition of this collaboration should express U.S. ATLAS's gratitude for their administration's support and offer occasional educational and informational opportunities for university administrative partners such as annual meetings, mailings, video conferences, hosted CERN visits, and so on. (page 86)


Recommendation 8

Involve universities in a public fashion

Sunday, May 17, 2009

evolution

Tier 3 Task Force

59

more depth will enhance

- Tevatron experience suggests:
 - "planning" is a process-the ground shifts
 - "analysis" is a highly-interactive activity "above" flattened roottuples
 - physicists' innovation is a critical scientific and competitive advantage
- We have tried to indicate that
 - the "analysis fraction" of Tier 2 resources may be in some jeopardy

The Tier 3 quartet:

- Could leverage fail-over production and MC contributions
 for targeted physicists' tasks
 allow university groups opportunities for important, local responsibilities
- Would create a common worldview in US ATLAS a common vocabulary and glossary: "T3gs" "T3g" "T3w" T3af" all stakeholders would know what each implies an understood, manageable procurement strategy

Three critical issues: deserve focused attention:

Support modelpersonal, regular, common

Access to the data for 2011-2012 milestones

target point-to-point minimal bandwidth—Internet2 is raring to go.

40 institutions...that's probably 40 different evaluations

DQ2 flexibility

called now "outsourcing" DQ2 to some Tier 2 or Tier 3

for catalog support and data subscription