Equity Issues in Physics (and STEM)

Mike Childress
"String Theory \& Gender" Workshop
Thursday 16 March 2017

Outline

Part 1:

Gender Demographics in Physics in the UK

Part 2:

Factors contributing to inequity

Closest comment(s):

how can we make (lasting) progress!!

Preface: the many axes of diversity

Examples / issues that follow are frequently framed in terms of gender or race but keep in mind there are other axes of diversity which have similar (but distinct!) difficulties.

Each individual's personal identity is more like a matrix than a scalar ${ }^{1}$.
(People with multiple aspects of diversity may have experiences that are not the simple product of experiences from each individual aspect.)
${ }^{1}$ from "Intersectionality as a blueprint for postcolonial scientific community building" by Dr. Chanda Prescod-Weinstein

PART 1:

Demographics Data in Physics (+ other STEM fields)

Gender statistics for A-level students

subtitle: we're already behind by the time students get to Uni

Gender statistics for A-level students

subtitle: we're already behind by the time students get to Uni

Figure 1a: Number of schools against the numbers of girls and boys progressing to A-level physics in 2011

Source: "It’s Different for Girls: The Influence of Schools"; IOP report 2012

Gender statistics for A-level students

subtitle: we're already behind by the time students get to Uni

Figure 1a: Nun 79% of A-level physics students are male
in 2011

Source: "It’s Different for Girls: The Influence of Schools"; IOP report 2012

Gender statistics for A-level students

subtitle: we're already behind by the time students get to Uni

Gender statistics for A-level students

subtitle: we're already behind by the time students get to Uni

Figure 1a: Nun 79% of A-level physics students are male
in 2011

Source: "It’s Different for Girls: The Influence of Schools"; IOP report 2012

Gender statistics for A-level students

subtitle: we're already behind by the time students get to Uni
Figure 2: Percentages of girls and boys who went on to take physics A-level in 2011 by type of school

Source: "It’s Different for Girls: The Influence of Schools"; IOP report 2012

Gender statistics for A-level students

subtitle: we're already behind by the time students get to Uni
Figure 2: Percentages of girls and boys who went on to take physics A-level in 2011 by type of school

Source: "It’s Different for Girls: The Influence of Schools"; IOP report 2012

Gender statistics for physics university students

Table 8: The proportion of physics graduates that is female by level of study 2004/05 to 2011/12

Degree level	Proportion of graduates that is female*									
	2004/05	$2005 / 06$	$2006 / 07$	$2007 / 08$	$2008 / 09$	$2009 / 10$	$2010 / 11$	$2011 / 12$		
First degree	21.0%	21.6%	21.6%	21.2%	20.6%	21.4%	22.9%	22.1%		
Masters	32.8%	33.1%	29.0%	27.5%	29.8%	23.9%	28.8%	29.7%		
Doctorate	22.2%	21.3%	22.5%	24.6%	26.6%	23.5%	24.0%	24.6%		

*Proportions are based on headcounts of graduates iwho spent 50\% or more of their time studying physics.

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

We're recruiting female physicists at a level consistent with A-level demographics, and retaining females through PhD level at a consistent (adequate) rate.

Gender statistics for physics students

Degree classifications by gender for:
enhanced first degree
(i.e. MPhys - top) and bachelors (BSc - bottom) averaged for graduates from 2009-2014 Male Female

Source: "Physics Students in UK Higher Education Institutions"; IOP report 2012

Gender statistics for physics studients

Anyone who says
 "women aren't as good at physics as men" is an idiot (here's the proof).

 averaged for graduates from 2009-2014
Male Female

Gender statistics for physics university students

Table 8: The proportion of physics graduates that is female by level of study 2004/05 to 2011/12

Degree level	Proportion of graduates that is female*									
	2004/05	$2005 / 06$	$2006 / 07$	$2007 / 08$	$2008 / 09$	$2009 / 10$	$2010 / 11$	$2011 / 12$		
First degree	21.0%	21.6%	21.6%	21.2%	20.6%	21.4%	22.9%	22.1%		
Masters	32.8%	33.1%	29.0%	27.5%	29.8%	23.9%	28.8%	29.7%		
Doctorate	22.2%	21.3%	22.5%	24.6%	26.6%	23.5%	24.0%	24.6%		

*Proportions are based on headcounts of graduates iwho spent 50\% or more of their time studying physics.

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

We're recruiting female physicists at a level consistent with A-level demographics, and retaining females through PhD level at a consistent (adequate) rate.

Gender statistics for physics university students

Percent of Physics Bachelor's Degrees Earned by Women, Classes of 1981 through 2010.

Gender statistics for ASTRONOMY university students

Percent of Bachelor's Degrees and Doctorate's in Astronomy Earned by Women, Classes 1983 through 2012.

http://www.aip.org/statistics

Gender statistics for physics university students

Table 8: The proportion of physics graduates that is female by level of study 2004/05 to 2011/12

Degree level	Proportion of graduates that is female*									
	2004/05	$2005 / 06$	$2006 / 07$	$2007 / 08$	$2008 / 09$	$2009 / 10$	$2010 / 11$	$2011 / 12$		
First degree	21.0%	21.6%	21.6%	21.2%	20.6%	21.4%	22.9%	22.1%		
Masters	32.8%	33.1%	29.0%	27.5%	29.8%	23.9%	28.8%	29.7%		
Doctorate	22.2%	21.3%	22.5%	24.6%	26.6%	23.5%	24.0%	24.6%		

*Proportions are based on headcounts of graduates iwho spent 50% or more of their time studying physics.

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

You may think we're doing well at recruiting students and advancing them through academic degrees...
but here is where things start to get bad

Gender statistics for physics academics

Updated with data for 2010/11 and 2011/12

Gender statistics for physics academics

In physical sciences \& engineering, females make up a low percentage of academic staff THAT IS NOT GROWING

Table 5: The proportion of all staff* that is female in selected academic cost centres 2003/04 to 2011/12, excluding teaching-only staff

Cost centre	Proportion of staff that is female								
	2003/04	2004/05	2005/06	2006/07	2007/08	2008/09	2009/10	2010/11	2011/12
Physics	14\%	15\%	15\%	14\%	15\%	15\%	16\%	16\%	16\%
Mathematics	18\%	21\%	22\%	16\%	18\%	18\%	18\%	17\%	18\%
Chemistry	23\%	23\%	24\%	23\%	23\%	24\%	24\%	24\%	24\%
Electrical, electronic \& computer engineering	12\%	12\%	13\%	12\%	11\%	12\%	12\%	13\%	13\%
Biosciences	39\%	40\%	41\%	40\%	40\%	41\%	41\%	41\%	42\%
All cost centres	40\%	41\%	42\%	40\%	40\%	41\%	41\%	42\%	42\%
*All staff comprises professors, senior lecturers, lecturers, other staff and researchers.									

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

Gender statistics for physics academics

Table 5: The proportion of all staff* that is female in selected academic cost centres 2003/04 to 2011/12, excluding teaching-only staff

Cost centre	Proportion of staff that is female								
	2003/04	2004/05	2005/06	2006/07	2007/08	2008/09	2009/10	2010/11	2011/12
Physics	14\%	15\%	15\%	14\%	15\%	15\%	16\%	16\%	16\%

Table 1: The number of staff in selected academic cost centres by grade 2003/04 to 2011/12

Cost centre	Grade	2003/04	2004/05	2005/06	2006/07	2007/08	2008/09	2009/10	2010/11	2011/12
Physics	Professor	485	515	570	590	620	635	650	670	745
	Senior lecturer	590	600	570	555	585	1355	1335	1320	1350
	Lecturer	390	380	375	400	420				
	Other grades	255	265	350	330	350	10	0	0	0
	Researcher	1790	1745	1900	1995	2125	2210	2180	2145	2110
	Teaching only				310	335	385	365	345	355
	Total staff	3510	3505	3765	3865	4100	4210	4170	4140	4205

Note: Stats dominated by \# of postdocs

Gender statistics for physics academics

Figure 3: Proportion of all staff that is female in the physics cost centre at each grade 1996/97 to 2011/12

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

Gender statistics for physics academics

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

Gender statistics for physics academics

Percentage of Physics Faculty Members Who Are Women

= Reader
= Lecturer
=Teaching

	Year			
	$\mathbf{1 9 9 8}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 1 0}$
by Academic Rank	$(\%)$	$(\%)$	$(\%)$	$(\%)$
Full Professor	3	5	6	8
Associate Professor	10	11	14	15
Assistant Professor	17	16	17	22
Instructor / Adjunct	$*$	16	19	21
Other ranks	13	15	12	18
by Highest Degree	$(\%)$	$(\%)$	$(\%)$	$(\%)$
Pffered by Department	6	7	10	12
Master's	9	13	14	15
Bachelor's	11	14	15	17
OVERALL	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$

The year in the table refers to the spring semester; for example, 2010 represents the 2009-10 academic year.

* These data were not collected in this survey year.
http://www.aip.org/statistics

Gender statistics for physics academics

Figure 4: Percentage distribution of male and female academic staff* excluding teaching-only staff, between grades in physics and all academic cost centres 2003/04 to 2011/12

- professor - senior lecturer/lecturer oresearcher

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

Gender statistics for physics academics

Figure 4: Percentage distribution of male and female academic staff* excluding teaching-only staff, between grades in physics and all academic cost centres 2003/04 to 2011/12

The fraction of male academics occupying senior roles is higher than that for females, AND THE SITUATIONS WAS EXACTLY THE SAME A DECADE AGO

STATUS QUO:

Male academics are consistently being given more senior promotions than female academics in physics

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

Gender statistics for physics academics

Figure 7: Proportion of male and female permanent academic* staff who were professors by age in selected academic cost centres 2011/12, excluding teaching-only staff

physics

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

Gender statistics for physics academics

Figure 7: Proportion of male and female permanent academic* staff who were professors by age in selected academic cost centres 2011/12, excluding teaching-only staff

Men are being promoted faster than women

60
It takes at least ten years longer on average for an equal number of women to have achieved full professor status.

41-50

51-60
age of staff

Gender statistics for physics academics

Men are being promoted faster than women in all STEM disciplines

Figure 7: Proportion of male and female permanent academic* staff who were professors by age in selected academic cost centres 2011/12, excluding teaching-only staff

Source: "Academic Physics Staff in UK Higher Education Institutions"; IOP report 2013

PART 1:

Summary:
(1) Student demographics in physic NOT reflective of general population (gender and race).
(2) Demographics of academic staff are WORSE, and get progressively worse the higher you go (promotion levels).

PART 2:

Systemic Factors
Contributing to Failure
to Achieve Equity

Stereotype Threat

Stereotype threat is the socialpsychological predicament in which one fears their actions may reinforce widely-known negative stereotypes about one's group

Stereotype Threat

Tell students:
"We're testing how smart you are."

Tell students: "We're testing how students solve problems."

Stereotype Threat

Groups of Asian-American female students were:

(a) reminded of their Asian heritage

Shih, Pittinsky, \& Amady 1999

Stereotype Threat

Figure 1. Study 1: Asian American's math test performance following stereotype activation.

Shih+ 2002

Stereotype Threat

THE GREAT DIVIDE

The data represent the scores typically achieved in the quantitative reasoning test of the graduate record examinations (GRE) by US students from different ethnic groups applying for graduate school. In the physical sciences, a minimum score of 700 is required by many PhD programmes.

Stereotype Threat

THE GREAT DIVIDE

The data represent the scores typically achieved in the quantitative reasoning test of the graduate record examinations (GRE) by US students from different ethnic groups applying for graduate school. In the physical sciences, a minimum score of 700 is required by many PhD programmes.

Brief Summaries:

Privilege
Micro-aggressions
Mansplaining
Gaslighting

(White / Male / Cis / Hetero / Ableist) Privilege

Privilege, at its core, is the advantages that people benefit from based solely on their social status.

It is a status that is conferred by society to certain groups, not seized by individuals, which is why it can be difficult sometimes to see one's own privilege.

(White / Male / Cis / Hetero / Ableist) Privilege

"Privilege is like an invisible backpack full of unearned assets that I can count on cashing in each day, but about which I was meant to remain oblivious." - Dr. Peggy McIntosh

Micro-Aggressions

Microaggression:
"social exchanges in which a member of a dominant culture says
or does something, often accidentally, and without intended malice, that belittles and alienates a member of a marginalized group."

Mansplaining

Gaslighting

(a.k.a. blame the victim)

Unconscious Bias

Unconscious bias (or "implicit bias") is a positive or negative mental attitude towards a person, thing, or group that a person holds at an subconscious level.

(definition from Stanford Medical School)

Mary and Jeff:

 an unconscious bias case studyMary and Jeff are both PhD students, and both recently published a paper on the high-profile object Star X

Mary

Jeff

Mary and Jeff give back-to-back contributed talks about $\operatorname{Star} X$ at a popular conference

In the audience for Mary and Jeff's talks is Professor Nigel, a prestigious prize-winning senior scientist

Professor Nigel has never realised it, but he has a subtle unconscious bias against women scientists

Professor Nigel leaves the conference thinking "Wow that Star X sure is interesting, and Jeff gave a great talk about it"

Professor Nigel leaves the conference thinking "Wow that Star X sure is interesting, and Jeff gave a great talk about it"

nature
 Vol 623 | Issue no. 9523 | 31 Nov 2018

www.nature.com/nature

Amazing Stars!!!
 by Prof. Nigel

review paper, Professor Nigel cites Jeff's paper about Star X, but not Mary's
In his next invited

\square
eneticists spent moce than a decade pertirg their first completes reading of the 3 bellion bese pairs of the human genome, which they finally publisbed in 2003 . But today's rapid sequencing machines can run through that much DNA in a week, and are busily churning out makiple sequeroces from an eve-expanding list of species. Mennwhik, astroeomers working wath the Sloan Digital Siy Sur vey telescope in New Mexico havemapped some 25% of the sky since 2000 , obtaining data en more than 200 million objects. The Large Synoptic Sarvey Telescope, stbeduled for completion atop Chiles Cerro Pachón in 2015, will gather that much data in one night Statistics tell a similar stary in mary scientific flelds. This is great news for research: data giot is always better than data famine. But it is also crase for concern, because investigator' 'oblity to amass huge quantities of data has accelerated much faster than have policies and
their fields and institutions should ensare that training is in place to make this possible.
The access principle asserts the valoe of openness only if results are shared can other researchers check the datais accuracy, verify analyses and build on previous work. So unless there are very good reasons for researchers to withhold data - reasons that should be publicly posted and available for comment by other researchers - they should make provisions to supply public access in a timely mannes, possibly as early as their grant "Each researcher is Finally, the stewardship principle ultimately responsible addresses the need for long-term pres- for ensuring the ervation. Scientific societies and com- truth and accuracy manities need to provide guidelines of the data he or on which data are worth retaining for
fưture analosis institutions and fund- she produces."
future analpsis; institutions and fund-

References:

Jeff et al.

Professor Nigel leaves the conference thinking "Wow that Star X sure is interesting, and Jeff gave a great talk about it"

When Professor Nigel gives invited review talks around the world, he adds a new slide about Star X with a figure from Jeff's paper (not Mary's)

3 years later...

Jeff and Mary have finished their PhDs and are both applying for a prestigious fellowship at Y University

The fellowship selection committees looks at their CVs and the following comments are heard:
"Well Mary seems nice but her paper only has 20 citations, while Jeff's paper on the same object has 50 citations."
"Ah yes I remember hearing about Jeff's work on Star X during a talk by Professor Nigel."

Jeff is awarded the fellowship

5 more years later...

Jeff and Mary are now both applying for permanent academic positions

Jeff has had 5 years of self-driven research afforded by having his fellowship. He has written 8 papers and has travelled to every major conference on his research topic. Jeff now has an h-index of 25 .

Mary has had two different postdoc positions in the same time, both of which have required her to move to a different continent. These positions also have had a heavy "service" load to support an existing project, leaving less time for science or conference travel.
Mary has written 3 papers and has an h-index of 15 .
You can guess the hiring outcomes that follow...
"Surely Professor Nigel can't be the sole cause of Mary's lesser success."

Mary

Jeff

"Surely Professor Nigel can't be the sole cause of Mary's lesser success."

Mary

Jeff

No ... but conferences full of Professor Nigels... group meetings, journal clubs full of Nigels... time allocation committees with Nigels...

Unconscious Bias

What can you do? Start by understanding your own implicit biases:

Good way to check yourself: Harvard's implicit assumptions tests
implicit.harvard.edu

Skin-tone IAT

Gender-Carser IAT

Sexuallity IAT

Weepona LAT

Native IAT

Presidents IAT

Religion IAT

Disability IAT

Gender-Sclence LAT

Race IAT

Arab-Musilim IAT

Weight IAT

Asian IAT

Age IAT
skin-tone (Light Skin - Dark Skin' IA). This LAT requies the abiry lo recognize ight and dark-skirned tacess. It othen reveals an automatic preference for lighn-skin relative to dark-sken.

Gender - Career. This LAT othen rements a miativelink betseon tomily and semales and between career and maibs.

Sexuality (Gay - Straighr' IAT). This LAT requires the ablify 10 dstinguish words and ymbols represerting gay and straight people. It often revests an automatic preterence for traight relative to gay peocle.

Weapons (Weapons - Harmiess Objects' LAT). This IAT requires the ablity to recogrize White and Black taces, and images of weapons or harmiess objects.

Nasve American (Native - White American' (A)). This laT requires the aboity to recognice White and Native American faces in either classic or modern dress, and the names of places that ace ether American or Foreign in origin of Barack Obama and one or more previous presidents.

Religion ('Religions' IAT). This LAT requines some tamilarity with religious terms trom various wond religions.

Disabinty (Disabled - Abled IAT). This laT requires the abily to recognize symbols representing abiod and disabled incividuals.
Gender - Science. This LAT often revewis a reative link between iberal ants and temaes and etween science and mises.

Aace CBiack - White' LAT This LAT requires the ability lo distrguish taces af European and trican origin. Il indicates that most Americans have an automatic preterence for white over Alrican
black

Arab-Muslim (Arab Muslim - Other People' IAT). This LAT requires the abilty to distinguish hames that ace likely to belong to Arab-Musims versus people of other nationalities or eligions.

Weight (Fat - Thin' IAT). This IAT requires the ability to distinguish faces of people who are bese and peocle who are tivin. It oten reveals an astomatio preferencee for tin peopio relative to fat poople.

Aslian American (Asian - European Americar" IAT). This LAT requires the abiliy to recogrize Whise and Asiam-American taces, and images of places that are eifer American or Forelgn in origh lest often incicates that Ameicans have automatic preterence for young over old

Unconscious Bias

Your unconscious biases are NOT a reflection on your chosen values!!!

This just tells you how your animal brain is programmed to respond to people who appear different than you!

The best way to apply corrective measures is to first be informed!

What is the net outcome on our demographics?

Intrinsic Aptitude

What is the net outcome on our demographics?

Intrinsic Aptitude

What is the net outcome on our demographics?

Intrinsic Aptitude

What is the net outcome on our demographics?

Intrinsic Aptitude

Performance Outcomes
(e.g. \# papers)
(or performance on standardised tests)

What is the net outcome on our demographics?

Intrinsic Aptitude

Performance Outcomes

(e.g. \# papers)

Esteem Metrics

(e.g. \# citations)

What is the net outcome on our demographics?

Intrinsic Aptitude

Performance Outcomes

(e.g. \# papers)

Esteem Metrics
(e.g. \# citations)

What can you do to make things better?

Unconscious bias awareness can decrease its impact!

Figure 1: Statistics on the success rate of HST proposals for Cycles 11 through 21. The histograms show the success rates for all proposals, proposals with a male PI and proposals with a female PI ; in each case, the statistics encompass all types of proposal (GO, SNAP, AR). The line shows the fraction of submitted proposals with female PIs in each cycle.

Reid et al. 2014, PASP, 126, 923

What can you do to make things better?

Stereotype threat awareness can decrease its impact!

What is the net outcome on our demographics?

Intrinsic Aptitude

Performance Outcomes

(e.g. \# papers)

Esteem Metrics
(e.g. \# citations)

Ideal Version!!

New Flash: this will NEVER happen perfectly!!

Intrinsic Aptitude

Performance Outcomes

(e.g. \# papers)

Esteem

 Metrics(e.g. \# citations)

A more realistic hope:

Intrinsic Aptitude

Performance Outcomes

(e.g. \# papers)

Esteem Metrics

(e.g. \# citations)

A more realistic hope:

Intrinsic Aptitude

Performance Outcomes

(e.g. \# papers)

Esteem Metrics

(e.g. \# citations)

Harassment

Higher education

Sexual harassment 'at epidemic levels' in UK universities

Exclusive: Almost 300 claims against staff have been made in six years, but victims and lawyers say those are just tip of iceberg

$<$
439
David Batty, Sally Weale and
Caroline Bannock
Sunday 5 March 2017 18.00 GMT

Oxford University reported the highest number of staff-on-student and staff-on-staff allegations. Photograph: Pete Lusabia/Alamy Stock Photo

Harassment

Higher

education

Sexual harassment 'at epidemic levels' in UK universities

Exclusive: Almost 300 claims against staff have been made in six years, but victims and lawyers say those are just tip of iceberg department for five years, but no manager she contacted had taken action. "The worst thing is that there are many people who are suffering under this professor. Simply putting in a formal complaint will not do anything but make life hell for me and other women. He will never be fired. Everyone I have spoken to confirms this."

[^0]
Harassment

Higher education

'We felt inferior and degraded': reporting sexual harassment at university

Readers describe their experiences of misconduct, what happened when they complained - or why they chose not to

Harassment

"On paper, my university has proactive, supportive and committed policies and procedures to address sexual violence, sexual harassment and sexual discrimination. I now know that if it is the word of a student against a senior member of staff, that commitment quickly evaporates and they close ranks to protect their own."
"This is everywhere in academia. I don't want to stay in it. It's huge. You'd hear these stories ... and you'd think maybe those things happen in those weird private universities in the States. I didn't think it would happen here.
"I am leaving academia because of what happened. I'm going to do my PhD and then that's it."

Harassment

This is a huge problem in academia

Universities generally pay lip service to protecting victims of harassment - but most of the time they will protect themselves, their reputations, and their financial interests first

The CULTURE of response to harassment has to change - we need (at a minimum) for EVERYONE to respond vocally and demand action be taken to punish harassers

(I'm still not sure how to ensure a lasting solution...)

End Note:

How can we (as a science / HE community) drive lasting change??

[^0]: (i) Oxford University reported the highest number of staff-on-student and staff-on-staff allegations. Photograph:

