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The ubiquity of CFTs

CFTs are conformal field theories. In the landscape of QFTs the are
special because their physics can be described without using
fundamental length scales.

There are many reasons for studying CFTs:

e Condensed matter systems

e Vapor-liquid critical points
Superfluid He*
Magnets at their Curie point
Quantum spin liquids

e Conformal window of gauge theories
e Quantum gravity
e Signposts in the landscape of QFTs
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The diversity of CFTs

Let us look at three animals in the zoo of CFTs in d > 2.
1 The critical O(N') models: defined as the IR fixed point of

S= [ @2 (0,000 +g(0'6)?) i€ (1,....N)
or defined via the n-vector model on the lattice.

2 N =4S8SYM
S = /d4xtr ( F F" +. )

3 The six-dimensional (2, 0) theories: no Lagrangian

N

Notice that these CFTs have very different microscopic descriptions.



Bootstrap

CFTs are ubiquitous and diverse.

“Grand question” : can we classify and solve all CFTs?



Bootstrap

CFTs are ubiquitous and diverse.
“Grand question” : can we classify and solve all CFTs?

Clearly approaching the problem using microscopic descriptions like
a lattice or a Lagrangian seems clumsy. Furthermore there is always
the risk of missing exotic theories.



Bootstrap

CFTs are ubiquitous and diverse.
“Grand question” : can we classify and solve all CFTs?

Clearly approaching the problem using microscopic descriptions like
a lattice or a Lagrangian seems clumsy. Furthermore there is always
the risk of missing exotic theories.

An alternative approach can be based on the bootstrap philosophy,
which is the aspiration that a theory can be completely determined
using only basic properties like:

o Unitarity

o Global symmetries

e General consistency conditions

We envisage some kind of procedure that takes these conditions as
input and gives the set of consistent CFTs as output.
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Clearly approaching the problem using microscopic descriptions like
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the risk of missing exotic theories.

An alternative approach can be based on the bootstrap philosophy,
which is the aspiration that a theory can be completely determined
using only basic properties like:

o Unitarity

o Global symmetries

e General consistency conditions
We envisage some kind of procedure that takes these conditions as
input and gives the set of consistent CFTs as output.

Is it possible?
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We will specialize to correlation functions of local operators in flat R<:
(O1(x1) ... Op(zp))

At this level CFTs can be defined as an operator algebra with:
e The (infinite) set of local primary operators O; with so(d + 1, 1)

quantum numbers: scaling dimension A; and spin 7;.
e The operator product expansion with the schematic form

O xl 02 .132 Z)\m (Ak’ek)

AT “[Il—zz,az]ok(xz)

Here the position dependence is captured by the C[z1 — x4, 02]
which are completely fixed by conformal invariance. Example:

0i(2)0;(y) = l(SyQAlJr/\’f 1+|#( ) By + . - 0u)

In a CFT the OPE has finite radius of convergence.



By repeated application of the OPE we reduce correlation functions to
the only non-vanishing one-point function:

(1) =1
In this way an OPE of the form

8ij 1+ # Oy + ...
Oz(x)oj(y) = |x_y| 1+Ai€j |$ ( ‘A lAjEAk Ok(y)

e |2A

(04(2)0; ZA 3,(O1(y) O (2))

k
= Ai;Cle — yaay}m

- |z1 — I2|A12$3|I1 — 1;3|A13,2‘1;2 — x3|A231

with Aij,k: =A; + Aj — Ap.



Bootstrap

For four-point functions we find:
(O1(21)O02(22)O3(23)O4(14)) =

Z )\1]5)\320[.%‘1 — X9, 62]0[$3 — T4, 84] <Ok(x2)(’)k(x4)>
k



Bootstrap

For four-point functions we find:

(O1(21)O2(22) O3(23) Oy (4)) =

Z )\1]5)\3]1\—/
; kN



Bootstrap

For four-point functions we find:

(O1(21)O02(22)O3(w3)Oa(w4)) =

Z A1§A3Z\J = Z AsAoh | p
p kN5
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Bootstrap

Z )‘lgASZv = Z AMsAot | p
p kN5

The crossing symmetry equations represent the associativity of the
operator algebra and give constraints for (A;, ¢;) and )\,j

Refined “grand question” : can we obtain all the (unitary) solutions to
the crossing symmetry equations?
[Ferrara, Gatto, Grillo (1973); Polyakov (1974)]

Note: classical and beautiful results in d = 2: minimal models and
rational CFTs. This talk will not be about those results.
[BPZ; Moore, Seiberg;...]
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Implementation

Even for a single correlation function there are infinitely many
crossing constraints for infinitely many variables. To date no exact
non-trivial solution in d > 2 is known.

Instead, we make the problem manageable by taking derivatives of
the crossing equations:

0= 0:733 (Xk: AlSABZ%\/ - ; Af?‘zi)é )

with m,n < A. We get finitely many equations, but each of them must
necessarily be satisfied.

u=v=1/4

— we can (merely) exclude inconsistent points.
[Rattazzi,Rychkov, Tonni,Vichi (2008)]



Implementation

More precisely, consider identical scalar operators of dimension §
(O (1) O (2)Os(23)Os (4))

and rewrite its corresponding crossing equation as:

w0710

After some reshuffling this becomes a sum rule of the form
1= Z/\QhAk 0, (U, 0)

with known functions hA ., (u,v) which depends only on:
e the quantum numbers (Ay, ¢;) of operator k;
o the ‘external’ dimension ¢;

o the positions z; via u = x3,22,27 057 and v = 22,23, 7 057



Implementation

1_ZA2hAkek u, 'U

Toy example: suppose the set of possible blocks is discrete - let’'s
label them by a set {I}. We want to know if a particular block #; is
present or not.

To do so we act on both sides with a linear functional ¢, for example
A
Of )] = > Gmn0y O f(,0)lumo—1/a
m,n=0
Suppose that we can tune the ¢,,_, such that

¢[l} =0

olhr(u,v)] >0  T#I (1)

Then ¢[h;(u,v)] < 0 and A? # 0, so the block for O; must be present.



Implementation

1_2/\2hAMk (u,v)

Real-world case: the set of possible blocks is continuous and labelled
by (A, £).

We will act with the same type of functional but now try to tune the
dmn such that, for fixed § and A,,
P[] =0

s _ (2)
SAA (1, 0)] >0 L>0V({E=0AA>A,)

Then there must exist A, < A, for which ¢>[h5Ak$0(u, v)] < 0 and for
which this block must be present — an upper bound on Ay,.

Finding the ¢,, ., is a problem in convex optimization which we solve
numerically.

(Note the importance of the positivity of \2.)
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Example 0

Example: bounds for four-dimensional CFTs

Consider a four-dimensional unitary CFT with scalar operators o and
e and a schematic OPE of the form

oxo=14+¢e+...

We look at crossing constraints from (cooo) to find the following
upper bound on A.:

20 ; ;
1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 5

[Rattazzi, Rychkov, Tonni, Vichi (2008)]



Example 1

Example: three-dimensional Ising model

Consider a three-dimensional unitary CFT with
e 2 relevant scalar operators, o and ¢
e a Z, symmetry such that the OPE becomes (schematically)

oxo=14€e+..., oXe=0+..., exXe=14+¢€e+...
We look at crossing constraints from three correlators

(coo0a), (ooee), (eeee).

What do we find?



Example 1

Result from (cooo), (ooee), (eece) with A = 43:

A,
3 a priori
/
0.5 \
0.5 3 A,

bootstrap (errors x10°%)
Precision data:

A, = 0.5181489(10) Aooe = 1.0518537(41)
A, = 1.412625(10)  Aeee = 1.532435(19)
AJ/ = ... CcC=...

[EI-Showk,Kos,Paulos,Rychkov,Poland,Simmons-Duffin,Vichi (2012-2016)]



Example 2

Similar islands exist for the O(NN) vector models:

A,
20
- 0Q0)
18F
o O
16F —— 03)
— 0
14f Ising
12F
. . . . . Ay
0.505 0.510 0515 0.520 0.525 0.530

o Bigger allowed regions than Ising (with A = 35)
o Excellent match with large N and Monte Carlo
o For O(2): discrepancy with measurement of specific heat of He*

[Kos, Poland, Simmons-Duffin, Vichi]
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Now let us consider the (2, 0) theories in six dimensions.
Q: Where do we start?

A: The only universal multiplet, the stress tensor multiplet. The
superconformal primaries ®!(x) with A = 4 and transform in the 14 of
so(5)r. So we will analyze:

(@1 (1) ... B (24))

In this case there are superconformal Ward identities to solve, and
superconformal blocks to compute. This is very nontrivial!

[Eden, Ferrara, Sokatchev; Arutyunov, Sokatchev; Ferrara, Sokatchev; Dolan,
Gallot, Sokatchev; Heslop]



Example 3

For the (2, 0) theories we can find for example a lower bound on the
central charge c.

25k

20 %%@

%(%
< ®
515 *a.
-
N
-
10 -
—r
[~
0.00 0.02 0.04 0.06 0.08

1/A

e Converges to ¢ = 25, the A; theory of 2 parallel M5 branes.
 Conjecture: unique solution for (&% (z)... &4 (x,)) at ¢ = 25

[Beem, Lemos, Rastelli, BVvR (2015)]



Example 3

Bounds for the dimension of an unprotected operator:

9.0
8.5
8.0\
Ny
A75

7.0
6.5

6OQOO 0.02

e more clearly shows uniqueness
e non-BPS observable
— bootstrap M-theory?
[Beem, Lemos, Rastelli, BVR (2015)]



Many more examples

| excluded |
! region

a=15/4

[Beem, Rastelli, BvR; Alday, Bissi; Beem, Lemos, Liendo, Rastelli, BvR; Iha,
Makino, Suzuki; Lemos, Liendo; lliesiu, Kos, Poland, Pufu, Simmons-Duffin,
Yacoby; Bobev, EI-Showk, Mazac, Paulos; Nakayama, Ohtsuki; Poland,
Stergiou; Li, Su; Chester, Giombi, lliescu, Klebanov, Pufu, Yacoby; Lin, Shao,
Simmons-Duffin, Wang, Yin ...]

Lots of physics!



The numerical bootstrap efforts can go much further.

Current efforts include:

o Classification of CFTs with few relevant scalar operators
(relevant also for IR dualities)

Correlation functions of operators with spin, e.g.

(ular) . dplza)) or (T (21) - Tho(24))

Application: conformal window of non-abelian gauge theories
More correlation functions in supersymmetric theories
Improving the numerical methods

Revisting the S-matrix bootstrap
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Outlook: the S-matrix bootstrap

For 2-to-2 scattering we assume a crossing symmetric function:
T(s,t,u) =T(t, s,u) =T (u,t,s)
with the usual analyticity properties:

5 my 4

and obeying unitarity:
Im(T(s,1)) = / [dr] T* (s, i(s, 7))T(5,7)

The same convex optimization techniques can be used for QFTs!
[Paulos, Penedones, BvR, Vieira (2016)]



Outlook: the S-matrix bootstrap

For the upper bound on the residue we for example find, in d = 4,
g112

150

100

50

— mo/m
4(21

[Paulos, Penedones, BvR, Vieira (to appear)]
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Analytic results

In parallel developments many analytic results have been derived.
The main idea is to look for universality, using only general
consistency conditions and little physical input.

In a nutshell:
© At large spin every CFT becomes “holographic”.

® Certain supersymmetric theories have solvable subsectors,
with Virasoro and/or Kac-Moody algebras in d = 4 and d = 6.

® Proof of the conformal collider bounds of [Hofman,Maldacenal].



1. Large spin analysis

Consider a four-point function

(05(0)0s(z,2)05(1)Os(0))
In Lorentzian signature 0 < z,z < 1. The lightcone limitis z — 1, z
fixed.

In this limit one finds:

e The identity operator dominates in the first channel, which can
only be recovered from the other channel by an infinite set of
“double-trace” operators with fixed OPE coefficients and

Ay—L0~20 as £ —

e An operator of twist 7 = A — £ in the first channel gives 1/¢7
subleading corrections to both spectrum and OPE coefficients.

[Alday,Maldacena; Komargodski,Zhiboedov;
Kaplan,Fitzpatrick,Simmons-Duffin,Poland; . . .]

Outlook: Could this be a new way to attack the crossing equations?

[Simmons-Duffin; Hogervorst, BvR; Caron-Huot]



2. A chiral algebra

Consider a CFT with N = 2 supersymmetry in d = 4 or (2,0)
supersymmetry in d = 6. By working in the cohomology of

Q=Q-S
one finds that correlation functions
o of a subset of (protected) operators
o suitably ‘twisted’

e restricted to a two-plane (z, 2)
become exactly those of a chiral algebra.

In other words,
c/2  2T(0) N oT(0)

2

T(2)T(0) ~

z4 z

now has a four- or six-dimensional interpretation!

z

We find many analytic results, for example for A" = 2in d = 4,

11

> -
c=3

[Beem,Liendo,Lemos,Peelaers,Rastelli,BvR;Liendo,Ramirez,Seo]



3. Regge limits

There are lightcone singularities at z = 0,1 and at z = 0, 1. By
crossing these cuts and entering the strictly Lorentzian regime, one

obtains, analytically:
o A proof of the bounds of [Hofman-Maldacena]

a 31
,<7
—c 18

/Twu u’ >0

for interacting CFTs in d > 2.

CJJ\H

e The ANEC

[Hartman,Jain,Kundu; Hofman,Li,Meltzer,Poland,Rejon-Barrera]
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understanding the utility of the crossing symmetry equations.
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Both numerically and analytically we continue to make progress in
understanding the utility of the crossing symmetry equations.

We seem to be edging closer to answering the “grand question”. ..
let’s see how far we can get!
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