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The ubiquity of CFTs

CFTs are conformal field theories. In the landscape of QFTs the are
special because their physics can be described without using
fundamental length scales.

There are many reasons for studying CFTs:

• Condensed matter systems
• Vapor-liquid critical points
• Superfluid He4

• Magnets at their Curie point
• Quantum spin liquids
• . . .

• Conformal window of gauge theories
• Quantum gravity
• Signposts in the landscape of QFTs
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The diversity of CFTs

Let us look at three animals in the zoo of CFTs in d > 2.
1 The critical O(N) models: defined as the IR fixed point of

S =

∫
d3x

(
∂µφi∂

µφi + g(φiφi)
2
)

i ∈ {1, . . . , N}

or defined via the n-vector model on the lattice.
2 N = 4 SYM

S =

∫
d4x tr

(
1

4
FµνF

µν + . . .

)
3 The six-dimensional (2, 0) theories: no Lagrangian

(2, 0) theory in d = 6 [Seiberg (1996)]

No (interacting) continuum Lagrangian QFTs in d > 4 dimensions.

Nevertheless, six-dimensional interacting QFTs exist.

M5

{

N

Ω≠

Conformally invariant: SO(5, 1) æ SO(6, 2)

Maximally supersymmetric: SO(6, 2) æ OSp(8|4)

AdS7

S4

Holographic dual description for N æ Œ.
Can’t compute 1/N corrections.

Christopher Beem February 19, 2015 - UC Davis

Notice that these CFTs have very different microscopic descriptions.



Bootstrap

CFTs are ubiquitous and diverse.

“Grand question” : can we classify and solve all CFTs?

Clearly approaching the problem using microscopic descriptions like
a lattice or a Lagrangian seems clumsy. Furthermore there is always
the risk of missing exotic theories.

An alternative approach can be based on the bootstrap philosophy,
which is the aspiration that a theory can be completely determined
using only basic properties like:

• Unitarity
• Global symmetries
• General consistency conditions

We envisage some kind of procedure that takes these conditions as
input and gives the set of consistent CFTs as output.

Is it possible?
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CFTs

We will specialize to correlation functions of local operators in flat Rd:

〈O1(x1) . . .On(xn)〉

At this level CFTs can be defined as an operator algebra with:
• The (infinite) set of local primary operators Oi with so(d+ 1, 1)

quantum numbers: scaling dimension ∆i and spin ~̀i.
• The operator product expansion with the schematic form

O1(x1)O2(x2) =
∑
k

λk12C
(∆k,~̀k)

(∆1,~̀1),(∆2,~̀2)
[x1 − x2, ∂2]Ok(x2)

Here the position dependence is captured by the C[x1 − x2, ∂2]
which are completely fixed by conformal invariance. Example:

Oi(x)Oj(y) =
δij

|x− y|2∆i
1 + λkij

1 + #(x− y) · ∂y + . . .

|x− y|∆i+∆j−∆k
Ok(y)

In a CFT the OPE has finite radius of convergence.



CFTs
By repeated application of the OPE we reduce correlation functions to
the only non-vanishing one-point function:

〈1〉 = 1

In this way an OPE of the form

Oi(x)Oj(y) =
δij

|x− y|2∆i
1 + λkij

1 + #(x− y) · ∂y + . . .

|x− y|∆i+∆j−∆k
Ok(y)

results in

〈Oi(x)Oj(y)〉 =
δij

|x− y|2∆

〈Oi(x)Oj(y)Ok(z)〉 =
∑
l

λlijC[x− y, ∂y]〈Ol(y)Ok(z)〉

= λkijC[x− y, ∂y]
1

|y − z|2∆k

=
λkij

|x1 − x2|∆12,3 |x1 − x3|∆13,2 |x2 − x3|∆23,1

with ∆ij,k = ∆i + ∆j −∆k.



Bootstrap

For four-point functions we find:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =∑
k

λ k
12λ

k
34C[x1 − x2, ∂2]C[x3 − x4, ∂4]〈Ok(x2)Ok(x4)〉
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Bootstrap

∑
k

λ k
12λ

k
34
�
@ �

@k
=
∑
p

λ p
13λ

p
24

�@

�@
p

The crossing symmetry equations represent the associativity of the
operator algebra and give constraints for (∆i, `i) and λ k

ij .

Refined “grand question” : can we obtain all the (unitary) solutions to
the crossing symmetry equations?

[Ferrara, Gatto, Grillo (1973); Polyakov (1974)]

Note: classical and beautiful results in d = 2: minimal models and
rational CFTs. This talk will not be about those results.

[BPZ; Moore, Seiberg; . . . ]
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Implementation

Even for a single correlation function there are infinitely many
crossing constraints for infinitely many variables. To date no exact
non-trivial solution in d > 2 is known.

Instead, we make the problem manageable by taking derivatives of
the crossing equations:

0 = ∂mu ∂
n
v

∑
k

λ k
12λ

k
34
�
@ �

@k
−
∑
p

λ p
13λ

p
24

�@

�@
p

∣∣∣∣∣∣
u=v=1/4

with m,n ≤ Λ. We get finitely many equations, but each of them must
necessarily be satisfied.

→ we can (merely) exclude inconsistent points.

[Rattazzi,Rychkov,Tonni,Vichi (2008)]



Implementation

More precisely, consider identical scalar operators of dimension δ

〈Oδ(x1)Oδ(x2)Oδ(x3)Oδ(x4)〉

and rewrite its corresponding crossing equation as:

0 =


�
@ �

@1
−
�@

�@
1

+
∑
k

λ2
k


�
@ �

@k
−
�@

�@
k


After some reshuffling this becomes a sum rule of the form

1 =
∑
k

λ2
kh

δ
∆k,`k

(u, v)

with known functions hδ∆k,`k
(u, v) which depends only on:

• the quantum numbers (∆k, `k) of operator k;
• the ‘external’ dimension δ;
• the positions xi via u = x2

12x
2
34x

−2
13 x

−2
24 and v = x2

14x
2
23x

−2
13 x

−2
24 .



Implementation

1 =
∑
k

λ2
kh

δ
∆k,`k

(u, v)

Toy example: suppose the set of possible blocks is discrete - let’s
label them by a set {I}. We want to know if a particular block hÎ is
present or not.

To do so we act on both sides with a linear functional φ, for example

φ [f(u, v)] =

Λ∑
m,n=0

φm,n∂
m
u ∂

n
v f(u, v)|u=v=1/4

Suppose that we can tune the φm,n such that

φ[1] = 0

φ[hI(u, v)] > 0 I 6= Î
(1)

Then φ[hÎ(u, v)] < 0 and λ2
Î
6= 0, so the block for OÎ must be present.



Implementation

1 =
∑
k

λ2
kh

δ
∆k,`k

(u, v)

Real-world case: the set of possible blocks is continuous and labelled
by (∆, `).

We will act with the same type of functional but now try to tune the
φmn such that, for fixed δ and ∆∗,

φ[1] = 0

φ[hδ∆,`(u, v)] > 0 ` > 0 ∨ (` = 0 ∧∆ > ∆∗)
(2)

Then there must exist ∆k < ∆∗ for which φ[hδ∆k,0
(u, v)] < 0 and for

which this block must be present→ an upper bound on ∆k.

Finding the φm,n is a problem in convex optimization which we solve
numerically.

(Note the importance of the positivity of λ2.)
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Example 0
Example: bounds for four-dimensional CFTs

Consider a four-dimensional unitary CFT with scalar operators σ and
ε and a schematic OPE of the form

σ × σ = 1 + ε+ . . .

We look at crossing constraints from 〈σσσσ〉 to find the following
upper bound on ∆ε:

∆ε

∆σ

[Rattazzi, Rychkov, Tonni, Vichi (2008)]



Example 1

Example: three-dimensional Ising model

Consider a three-dimensional unitary CFT with
• 2 relevant scalar operators, σ and ε
• a Z2 symmetry such that the OPE becomes (schematically)

σ × σ = 1 + ε+ . . . , σ × ε = σ + . . . , ε× ε = 1 + ε+ . . .

We look at crossing constraints from three correlators

〈σσσσ〉, 〈σσεε〉, 〈εεεε〉.

What do we find?



Example 1

Result from 〈σσσσ〉, 〈σσεε〉, 〈εεεε〉 with Λ = 43:

✦ 2 relevant operators:  �(Z2 = �), ✏(Z2 = +)

G = Z2✦ global symmetry

��

�✏

0.5

0.5

3

3

(universality class of the 3d Ising model)

a priori

bootstrap (errors x105)
O(102) better than Monte Carlo

�� = 0.5181489(10)

�✏ = 1.412625(10)

PIs Poland, Simmons-Duffin 2016

Example in d=3

Precision data:

∆σ = 0.5181489(10) λσσε = 1.0518537(41)

∆ε = 1.412625(10) λεεε = 1.532435(19)

∆σ′ = . . . c = . . .

. . .

[El-Showk,Kos,Paulos,Rychkov,Poland,Simmons-Duffin,Vichi (2012-2016)]



Example 2

Similar islands exist for the O(N) vector models:

this work will be able to do so in the near future. More generally, the results of this work
give us hope that the same techniques can be used to to solve other interesting strongly-
coupled CFTs, such as the 3d Gross-Neveu models, 3d Chern-Simons and gauge theories
coupled to matter, 4d QCD in the conformal window, N = 4 supersymmetric Yang-Mills
theory, and more.

The structure of this paper is as follows. In section 2, we summarize the crossing
symmetry conditions arising from systems of correlators in 3d CFTs with O(N) symmetry,
and discuss how to study them with semidefinite programming. In section 3, we describe
our results and in section 4 we discuss several directions for future work. Details of our
implementation are given in appendix A. An exploration of the role of the leading symmetric
tensor is given in appendix B.

0.505 0.510 0.515 0.520 0.525 0.530
!Φ

1.2

1.4

1.6

1.8

2.0
!s

The O!N" archipelago

Ising

O!2"
O!3"
O!4"

O!20"

Figure 1: Allowed regions for operator dimensions in 3d CFTs with an O(N) global symmetry
and exactly one relevant scalar φi in the vector representation and one relevant scalar s in
the singlet representation of O(N), for N = 1, 2, 3, 4, 20. The case N = 1, corresponding to
the 3d Ising model, is from [51]. The allowed regions for N = 2, 3, 4, 20 were computed with
Λ = 35, where Λ (defined in appendix A) is related to the number of derivatives of the crossing
equation used. Each region is roughly triangular, with an upper-left vertex that corresponds
to the kinks in previous bounds [15]. Further allowed regions may exist outside the range of
this plot; we leave their exploration to future work.

4

• Bigger allowed regions than Ising (with Λ = 35)
• Excellent match with large N and Monte Carlo
• For O(2): discrepancy with measurement of specific heat of He4

[Kos, Poland, Simmons-Duffin, Vichi]



Example 3

Now let us consider the (2, 0) theories in six dimensions.

Q: Where do we start?

A: The only universal multiplet, the stress tensor multiplet. The
superconformal primaries ΦI(x) with ∆ = 4 and transform in the 14 of
so(5)R. So we will analyze:

〈ΦI1(x1) . . .ΦI4(x4)〉

In this case there are superconformal Ward identities to solve, and
superconformal blocks to compute. This is very nontrivial!

[Eden, Ferrara, Sokatchev; Arutyunov, Sokatchev; Ferrara, Sokatchev; Dolan,
Gallot, Sokatchev; Heslop]
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Example 3

For the (2, 0) theories we can find for example a lower bound on the
central charge c.

0.00 0.02 0.04 0.06 0.08
5

10

15

20

25

1�L

c
m

in

• Converges to c = 25, the A1 theory of 2 parallel M5 branes.
• Conjecture: unique solution for 〈ΦI1(x1) . . .ΦI4(x4)〉 at c = 25

[Beem, Lemos, Rastelli, BvR (2015)]



Example 3
Bounds for the dimension of an unprotected operator:

0.00 0.02 0.04 0.06 0.08 0.10
6.0

6.5

7.0

7.5

8.0

8.5

9.0

1
c

D0

• more clearly shows uniqueness
• non-BPS observable
→ bootstrap M-theory?

[Beem, Lemos, Rastelli, BvR (2015)]



Many more examples
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log HD0*H•L - D0*L

Figure 2: Upper bounds on �⇤
0 (the smallest conformal dimension of a spin-0 long multiplet

appearing in the O35c ⇥ O35c OPE) for large values of cT . The bounds are computed with
jmax = 20 and ⇤ = 19. The long multiplets of spin j > 0 are only restricted by unitarity.
The best fit for the last ten points (shown in black) is log(�⇤

0(1)��⇤
0) = 4.55� 1.00 log cT .
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Figure 3: Upper bounds on �⇤
2, which is the smallest conformal dimension of a long multiplet

of spin-2 appearing in the O35c ⇥ O35c OPE. The long multiplets of spin j 6= 2 are only
restricted by unitarity. These bounds are computed with jmax = 20 and ⇤ = 19 (orange),
⇤ = 17 (black), and ⇤ = 15 (light brown). The plot on the right is a zoomed-in version of
the plot on the left. The dashed vertical lines correspond to the values of cT in Table 9.

of a spin-2 long multiplet. We obtain the bound on �⇤
2 under the assumption that

long multiplets of spin j 6= 2 are only restricted by the unitarity condition. In other

words, we set �⇤
j = j + 1 for all j 6= 2. In Figure 3, we plot the upper bound on �⇤

2

as a function of cT for ⇤ = 15 (in light brown), ⇤ = 17 (in black), and ⇤ = 19 (in

orange). The convergence as a function of ⇤ is poorer than in the �⇤
0 case, but it is

still reasonably good throughout, especially at large cT .

38

Figures 1 and 2 exhibit a variety of interesting features.

1. A clear kink at �� = d�1
3

where we conjecture that the bound is saturated by the d-

dimensional critical Wess-Zumino model with a cubic superpotential.

2. A second kink located at �� = d
4

that is very sharp for 3  d  4, but seems to soften,

and may no longer exist, for d < 3.

3. A third kink at some value of �� > d
4
. In d = 3 the value is �� ⇡ 0.86. In d = 4 this

feature appears at �� ⇡ 1.38 and is likely the same feature first observed in [26].

Figure 2: A close-up of the bounds in Figure 1. Note that the first kink in every dimension

corresponds to �� = d�1
3 (the locations of the vertical lines).

The location of the second feature described above, �� = d
4
, coincides with a kinematically

special point. This is the value of �� where the scalar operator P in the � ⇥ � OPE with

dimension d � 2�� is a superdescendant of a superconformal primary which hits the unitarity

bound (see (109) and the discussion around (85)). The third kink, however, does not seem to

correspond to any kinematically special point. We will discuss these two features in more detail

in Section 6.5.

28

FIG. 2: Isolated regions for the conformal dimensions (∆φ,∆σ) in 5D O(500) vector model. The

light, medium and dark blue regions are corresponding to the results from multiple correlator

conformal bootstrap with Λ = 21, 23, 25, respectively. In the graph we have used the dimension

gaps ∆∗
S,0 = 3.965 and ∆∗

V,0 = 5. The black cross denotes the prediction from large N expansion.

as discussed before.

Remarkably, the allowed region of (∆φ, ∆σ) obtained from the multiple correlator

bootstrap is enclosed in a small island, which is colored in dark blue in Figure 1. Besides the

dimension gap ∆∗
S,0 = 3.965 in S-channel, we have employed another dimension gap ∆∗

V,0 = 5

in V-channel that the next primary O(N) vector scalar has dimension ∆ ! 5. The dark

blue island lies in the center of the tip, and the black cross denoting the large N prediction

is rather close to the center of this island. Such a high coincidence is extraordinary in view

of only crossing symmetry and unitary condition are applied to carve out the island. On the

other hand, the conformal bootstrap result also shows that the large N expansion is reliable

16

Upper bound on lowest parity-odd scalar � 2  ⇥  

Figure 1: Upper bounds on the dimension of the lowest dimension parity-odd scalar
appearing in the  ⇥  OPE, assuming only conformal symmetry, parity symmetry, and
unitarity. The orange region is allowed, and the white region is disallowed. The black dashed
line starting at the free theory point (� ,��) = (1, 2) gives the relation among dimensions
specific to Mean Field Theory, while the dashed line starting at (� ,��) = (1, 0.5) gives
the relation among dimensions expected for N = 1 SCFTs, assuming  is a superdescendant
of �. These bounds are determined using the procedure described in Section 3 (see also
Appendix C) by performing a binary search in �� with 10�3 precision. The parameter ⇤
defined in Appendix C is given by ⇤ = 23.

� . 1.27 must have a relevant parity-odd scalar in the  ⇥  OPE. Conversely, a CFT
with no relevant parity-odd scalars in the  ⇥  OPE must have � & 1.27. In addition,
we see that any CFT with a fermion of su�ciently low dimension must have a parity-odd
scalar in the  ⇥  OPE of dimension smaller than ⇡ 7.7.

4.2.2 The Lowest Dimension Parity-Even Scalar

In Figure 2, we show an upper bound on �✏ (the lowest dimension parity-even scalar) in
any unitary, parity-invariant 3D CFT. The bound monotonically increases starting from
the point (� ,�✏) = (1, 3) up to a value of �✏ ⇡ 5.1. At this point, we encounter a change
in slope which occurs at precisely the same value of � as the vertical jump in Figure 1.

Note that the free fermion theory does not contain a parity-even scalar of dimension
3, since the only candidate  /@ vanishes by the equations of motion. However, in Mean

20
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[Beem, Rastelli, BvR; Alday, Bissi; Beem, Lemos, Liendo, Rastelli, BvR; Iha,
Makino, Suzuki; Lemos, Liendo; Iliesiu, Kos, Poland, Pufu, Simmons-Duffin,
Yacoby; Bobev, El-Showk, Mazac, Paulos; Nakayama, Ohtsuki; Poland,
Stergiou; Li, Su; Chester, Giombi, Iliescu, Klebanov, Pufu, Yacoby; Lin, Shao,
Simmons-Duffin, Wang, Yin . . . ]

Lots of physics!



Outlook

The numerical bootstrap efforts can go much further.

Current efforts include:
• Classification of CFTs with few relevant scalar operators

(relevant also for IR dualities)
• Correlation functions of operators with spin, e.g.

〈jµ(x1) . . . jρ(x4)〉 or 〈Tµν(x1) . . . Tρσ(x4)〉

Application: conformal window of non-abelian gauge theories
• More correlation functions in supersymmetric theories
• Improving the numerical methods
• Revisting the S-matrix bootstrap
• . . .
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Outlook: the S-matrix bootstrap

For 2-to-2 scattering we assume a crossing symmetric function:

T (s, t, u) = T (t, s, u) = T (u, t, s)

with the usual analyticity properties:

and obeying unitarity:

Im(T (s, t)) =

∫
[dτ ] T ∗(s, t̃(s, τ))T (s, τ)

The same convex optimization techniques can be used for QFTs!

[Paulos, Penedones, BvR, Vieira (2016)]



Outlook: the S-matrix bootstrap

For the upper bound on the residue we for example find, in d = 4,

1 2 3 4
(m2 /m1)

2

50

100

150

g112

[Paulos, Penedones, BvR, Vieira (to appear)]
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Analytic results

In parallel developments many analytic results have been derived.
The main idea is to look for universality, using only general
consistency conditions and little physical input.

In a nutshell:
1 At large spin every CFT becomes “holographic”.
2 Certain supersymmetric theories have solvable subsectors,

with Virasoro and/or Kac-Moody algebras in d = 4 and d = 6.
3 Proof of the conformal collider bounds of [Hofman,Maldacena].



1. Large spin analysis
Consider a four-point function

〈Oδ(0)Oδ(z, z̄)Oδ(1)Oδ(∞)〉

In Lorentzian signature 0 < z, z̄ < 1. The lightcone limit is z → 1, z̄
fixed.

In this limit one finds:
• The identity operator dominates in the first channel, which can

only be recovered from the other channel by an infinite set of
“double-trace” operators with fixed OPE coefficients and

∆` − ` ∼ 2δ as `→∞

• An operator of twist τ = ∆− ` in the first channel gives 1/`τ

subleading corrections to both spectrum and OPE coefficients.
[Alday,Maldacena; Komargodski,Zhiboedov;

Kaplan,Fitzpatrick,Simmons-Duffin,Poland; . . . ]

Outlook: Could this be a new way to attack the crossing equations?

[Simmons-Duffin; Hogervorst, BvR; Caron-Huot]



2. A chiral algebra
Consider a CFT with N = 2 supersymmetry in d = 4 or (2, 0)
supersymmetry in d = 6. By working in the cohomology of

Q = Q− S
one finds that correlation functions

• of a subset of (protected) operators
• suitably ‘twisted’
• restricted to a two-plane (z, z̄)

become exactly those of a chiral algebra.

In other words,

T (z)T (0) ∼ c/2

z4
+

2T (0)

z2
+
∂T (0)

z

now has a four- or six-dimensional interpretation!

We find many analytic results, for example for N = 2 in d = 4,

c ≥ 11

30

[Beem,Liendo,Lemos,Peelaers,Rastelli,BvR;Liendo,Ramirez,Seo]



3. Regge limits

There are lightcone singularities at z = 0, 1 and at z̄ = 0, 1. By
crossing these cuts and entering the strictly Lorentzian regime, one
obtains, analytically:

• A proof of the bounds of [Hofman-Maldacena]

1

3
≤ a

c
≤ 31

18

• The ANEC ∫
Tµνu

µuν ≥ 0

for interacting CFTs in d > 2.
• . . .

[Hartman,Jain,Kundu; Hofman,Li,Meltzer,Poland,Rejon-Barrera]



The future

Both numerically and analytically we continue to make progress in
understanding the utility of the crossing symmetry equations.

We seem to be edging closer to answering the “grand question”. . .
let’s see how far we can get!
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