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1 Question

What is the most general consistent scalar-tensor theory?

I General Relativity is the only consistent 4d theory describing a massless,

interacting spin two field (2 tensor dofs).

I Is there any analogue result for scalar-tensor set-ups propagating

massless spin two + spin zero fields (2+1 dofs)?

Plan

1. Motivations for considering this question

2. What do we know about its answer

little, but a geometrical approach can be useful (maybe)
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Why considering them?

I Naturally arise from string theory

I Important applications to cosmology
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What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
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d

4
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p
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– More generally: any function S =
R
d

4
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�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]
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- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?

1

Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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2

Removing the ghost in decoupling limit

Question: is it possible to UV complete FP such to get

⇧ A lagrangian with no ghosts

⇧ With interactions allowing to implement Vainshtein mechanism

Answer: yes [de Rham-Gabadadze]

Focus on decoupling limit:

only ⌅ self-interactions are kept: isolate problematic helicity-0 mode.

• After applying Stückelberg, the lagrangian always contains at least two derivatives on each �.

⌅ Invariant under Galileon symmetry ⌅ ⇤ ⌅ + c + bµxµ

• Add interactions that

– Raise cut-o� to �3 =
�
m2MPl

⇥1
3

– Assemble terms inGalileon combinations [Nicolis-Rattazzi-Trincherini]

⌅ Corresponding EOMs contain at most two time derivatives!!

L2 = �1

2
(⌃⌅)2

L3 = (⌃⌅)22⌅

L4 = (⌃⌅)2
⇤
(2⌅)2 � (⌃µ⌃⇤⌅)

2
⌅

L5 = (⌃⌅)2
⇤
(2⌅)3 + 2 (⌃µ⌃⇤⌅)

3 � 32⌅ (⌃µ⌃⇤⌅)
2
⌅

• How to do in the context of massive gravity?

⌅ Use the quantity

K ⇤
µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤

µ

built with metric Hµ⇤ [deRham-Gabadadze-Tolley]
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5 Galileons from broken gauge invariance

U(1) vector gauge theory: break symmetry through interactions containing derivatives

L = �1

4
Fµ⌫F

µ⌫ + symmetry breaking part

+
Can interactions of the vector longitudinal mode lead to Galileon set-up ?

Galileons are interesting for

• Acceleration of the universe

• Screening e↵ects

• Non-renormalization theorems

,
Task

Realise Galileons as ‘Goldstone bosons’ of broken gauge symmetry

(in appropriate decoupling limit)
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?

1

Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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6 Scalar-Tensor Theories

Why considering them?

I Naturally arise from string theory

I Important applications to cosmology

Prototype
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Canonical kinetic term

I Much more can be done...

– 6 –

What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
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– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?

1

Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
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2

Removing the ghost in decoupling limit

Question: is it possible to UV complete FP such to get

⇧ A lagrangian with no ghosts

⇧ With interactions allowing to implement Vainshtein mechanism

Answer: yes [de Rham-Gabadadze]

Focus on decoupling limit:

only ⌅ self-interactions are kept: isolate problematic helicity-0 mode.

• After applying Stückelberg, the lagrangian always contains at least two derivatives on each �.

⌅ Invariant under Galileon symmetry ⌅ ⇤ ⌅ + c + bµxµ

• Add interactions that

– Raise cut-o� to �3 =
�
m2MPl

⇥1
3

– Assemble terms inGalileon combinations [Nicolis-Rattazzi-Trincherini]

⌅ Corresponding EOMs contain at most two time derivatives!!

L2 = �1

2
(⌃⌅)2

L3 = (⌃⌅)22⌅

L4 = (⌃⌅)2
⇤
(2⌅)2 � (⌃µ⌃⇤⌅)

2
⌅

L5 = (⌃⌅)2
⇤
(2⌅)3 + 2 (⌃µ⌃⇤⌅)

3 � 32⌅ (⌃µ⌃⇤⌅)
2
⌅

• How to do in the context of massive gravity?

⌅ Use the quantity

K ⇤
µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤

µ

built with metric Hµ⇤ [deRham-Gabadadze-Tolley]
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What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]

{

- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c

- Vainshtein mechanism:

non-linearities associated with self-interactions hide the effect of scalar nearby

spherically symmetric sources

Regime where second derivatives @

2
⇡

are important

!

Evade stringent bounds on

deviations from GR

self-acceleration

There exist branches of solutions that are asymptotically de Sitter,

with no need of positive cosmological constant.
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?

1

Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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Removing the ghost in decoupling limit

Question: is it possible to UV complete FP such to get

⇧ A lagrangian with no ghosts

⇧ With interactions allowing to implement Vainshtein mechanism

Answer: yes [de Rham-Gabadadze]

Focus on decoupling limit:

only ⌅ self-interactions are kept: isolate problematic helicity-0 mode.

• After applying Stückelberg, the lagrangian always contains at least two derivatives on each �.

⌅ Invariant under Galileon symmetry ⌅ ⇤ ⌅ + c + bµxµ

• Add interactions that

– Raise cut-o� to �3 =
�
m2MPl

⇥1
3

– Assemble terms inGalileon combinations [Nicolis-Rattazzi-Trincherini]

⌅ Corresponding EOMs contain at most two time derivatives!!

L2 = �1

2
(⌃⌅)2

L3 = (⌃⌅)22⌅

L4 = (⌃⌅)2
⇤
(2⌅)2 � (⌃µ⌃⇤⌅)

2
⌅

L5 = (⌃⌅)2
⇤
(2⌅)3 + 2 (⌃µ⌃⇤⌅)

3 � 32⌅ (⌃µ⌃⇤⌅)
2
⌅

• How to do in the context of massive gravity?

⌅ Use the quantity

K ⇤
µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤

µ

built with metric Hµ⇤ [deRham-Gabadadze-Tolley]

6

What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]

{

- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c

- Vainshtein mechanism:

non-linearities associated with self-interactions hide the effect of scalar nearby

spherically symmetric sources

Regime where second derivatives @

2
⇡ are important
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. Modified gravity
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence
Scalar field with appropriate interactions

. Modified gravity
New gravitational d.o.f.s control the cosmological dynamics

at large scales

Problems:

• We need very light fields to drive dark energy (m ' H):

• Why don’t we see them with observations at solar system scales?

• For scalars: What’s keeping their mass small?
(scalar masses receive large corrections)
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3 Dark Energy

...

• Cosmic acceleration and screening mechanisms:

Possible realizations of screening mechanisms:

– Extradimensions, brane-world scenarios

– Break symmetries (massive gravity): new dofs are ‘longitudinal polarizations’

Realize Galileons as Goldstones of broken symmetries

– Put by hand

put figure
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What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]

{

- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c

- Vainshtein mechanism:

non-linearities associated with self-interactions hide the effect of scalar nearby

spherically symmetric sources

Regime where second derivatives @

2
⇡

are important
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What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]

{

- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c

- Vainshtein mechanism:

non-linearities associated with self-interactions hide the effect of scalar nearby

spherically symmetric sources

Regime where second derivatives @

2
⇡

are important

!

Evade stringent bounds on

deviations from GR

self-acceleration

There exist branches of solutions that are asymptotically de Sitter,

with no need of positive cosmological constant.
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What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]

{

- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c

- Vainshtein mechanism:

non-linearities associated with self-interactions hide the effect of scalar nearby

spherically symmetric sources

Regime where second derivatives @

2
⇡

are important

!

Evade stringent bounds on

deviations from GR

self-acceleration

There exist branches of cosmological solutions that are asymptotically de Sitter,

with no need of positive cosmological constant.

Due to massless scalar with

derivative self-interactions

Due to massless scalar with

derivative self-interactions

Vainshtein

radius
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6 Scalar-Tensor Theories

Why considering them?

I Naturally arise from string theory

I Important applications to cosmology

Prototype

S =

Z
d

4
x

p
�g


M

2
P l

2
R� 1

2
@µ�@

µ
�� V (�)

�

Canonical kinetic term

I Much more can be done...

– 6 –

What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]
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5 Galileons from broken gauge invariance

U(1) vector gauge theory: break symmetry through interactions containing derivatives

L = �1

4
Fµ⌫F

µ⌫ + symmetry breaking part

+
Can interactions of the vector longitudinal mode lead to Galileon set-up ?

Galileons are interesting for

• Acceleration of the universe

• Screening e↵ects

• Non-renormalization theorems

,
Task

Realise Galileons as ‘Goldstone bosons’ of broken gauge symmetry

(in appropriate decoupling limit)
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• Acceleration of the universe

• Screening e↵ects

• Non-renormalization theorems

,
Task

Realise Galileons as ‘Goldstone bosons’ of broken gauge symmetry

(in appropriate decoupling limit)
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales

Problem: Why didn’t we reveal these new d.o.f.’s at solar system scales?

1

Dark energy

Screening mechanisms

• Chamaleon, Vainshtein mechanism

Non-linear dynamics at scales below a radius rV :

Strong coupling effects suppress extra forces () GR results)

• Simplest realization of Vainshtein:

Scalars with appropriate derivative self-interactions

Galileons [Nicolis et al]

. Self-interactions drive cosmic acceleration: ⇡ / t2

. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ

2
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Removing the ghost in decoupling limit

Question: is it possible to UV complete FP such to get

⇧ A lagrangian with no ghosts

⇧ With interactions allowing to implement Vainshtein mechanism

Answer: yes [de Rham-Gabadadze]

Focus on decoupling limit:

only ⌅ self-interactions are kept: isolate problematic helicity-0 mode.

• After applying Stückelberg, the lagrangian always contains at least two derivatives on each �.

⌅ Invariant under Galileon symmetry ⌅ ⇤ ⌅ + c + bµxµ

• Add interactions that

– Raise cut-o� to �3 =
�
m2MPl

⇥1
3

– Assemble terms inGalileon combinations [Nicolis-Rattazzi-Trincherini]

⌅ Corresponding EOMs contain at most two time derivatives!!

L2 = �1

2
(⌃⌅)2

L3 = (⌃⌅)22⌅

L4 = (⌃⌅)2
⇤
(2⌅)2 � (⌃µ⌃⇤⌅)

2
⌅

L5 = (⌃⌅)2
⇤
(2⌅)3 + 2 (⌃µ⌃⇤⌅)

3 � 32⌅ (⌃µ⌃⇤⌅)
2
⌅

• How to do in the context of massive gravity?

⌅ Use the quantity

K ⇤
µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤

µ

built with metric Hµ⇤ [deRham-Gabadadze-Tolley]

6

What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]

{

- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c

- Vainshtein mechanism:

non-linearities associated with self-interactions hide the effect of scalar nearby

spherically symmetric sources

Regime where second derivatives @

2
⇡

are important

!

Evade stringent bounds on

deviations from GR

self-acceleration

There exist branches of cosmological solutions that are asymptotically de Sitter,

with no need of positive cosmological constant.

Due to massless scalar with

derivative self-interactions

Due to massless scalar with

derivative self-interactions

why don’t we see it?

Galileon interactions don’t get renormalized in perturbation theory

Thanks to structure of interactions + Galilean symmetry

Vainshtein

radius

– 7 –

What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]

{

- EOMs contain at most second derivatives

- EOMs invariant under symmetry ⇡ ! ⇡ + bµ x
µ + c

- Vainshtein mechanism:

non-linearities associated with self-interactions hide the effect of scalar nearby

spherically symmetric sources

Regime where second derivatives @

2
⇡

are important

!

Evade stringent bounds on

deviations from GR

self-acceleration

There exist branches of cosmological solutions that are asymptotically de Sitter,

with no need of positive cosmological constant.

Due to massless scalar with

derivative self-interactions

Due to massless scalar with

derivative self-interactions

why don’t we see it?

Galileon interactions don’t get renormalized in perturbation theory

Thanks to structure of interactions + Galilean symmetry

Vainshtein

radius

– 7 –

The Galileon

Non-renormalization theorem
Luty, Porrati, Rattazzi 03

Loops of quantum fields with interactions                    generate
terms involving at least 2 derivatives on the external legs.
In particular galilean terms are not renormalized

Classical non-linearities important

All the other operators are suppressed by extra powers of
)

V
a
i
n
s
h
t
e
i
n

r
a
d
i
u
s

–
8
–

)

Vainshtein

radius

[Nicolis, Rattazzi; Goon, Hinterbichler, Trodden]
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Figure 11: A contribution to the quantum e↵ective action in the theory of a galileon. For a given 1PI graph,

focusing on a sub-diagram with m external lines allows us to deduce that only terms with two derivatives

per field are generated quantum-mechanically. Therefore, the galileons are not renormalized.

We now use the symmetries of the ⌘-tensor to write the piece containing internal fields as a double

total derivative:

L
n

⇠ ⌘µ1

⌫

1

µ

2

⌫

2

···µn�1

⌫n�1

�
�ext@µ

1

@
⌫

1

�ext · · · @
µm�1

@
⌫m�1

�ext · · · @
µm@

⌫m

⇥
�int · · · @

µn�1

@
⌫n�1

�int
⇤�

.

(6.66)

This means that the Feynman rule for this vertex has two factors of the sum of internal momenta,P
kint, which we may trade for external momenta

P
kint = �

P
kext. This means that the Feynman

rules for the vertex (6.65) have two powers of external momentum for each external field.

Since every external line comes with two powers of momentum in every 1PI vertex, only terms

with two derivatives per field get generated in the quantum e↵ective action—the coe�cients of the

galileon terms do not receive quantum corrections. This holds to all loop orders. As an example,

the 1-loop quantum e↵ective action is of the form [203]

� ⇠
X

m


⇤4 + ⇤2@2 + @4 log

✓
@2

⇤2

◆�✓
@2�

⇤3

◆
m

, (6.67)

which clearly only has contributions to terms with at least two derivatives per field.

Topological nature:

A surprising fact about galileons is that they are topological in a suitably understood sense. If

we interpret the galileon as a goldstone boson, non-linearly realizing the symmetries (6.31), the five

galileon terms appear as Wess–Zumino terms [515]. Here we give a brief sketch of the construction.

To begin, we note that the galileons parameterize the coset space

Gal
�
(d � 1) + 1, 1

�
/SO((d � 1), 1) , (6.68)
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Regime where second derivatives @
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are important
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Evade stringent bounds on

deviations from GR

self-acceleration

There exist branches of cosmological solutions that are asymptotically de Sitter,

with no need of positive cosmological constant.

Due to massless scalar with

derivative self-interactions

Due to massless scalar with

derivative self-interactions

why don’t we see it?

Galileon interactions don’t get renormalized in perturbation theory

Thanks to structure of interactions + Galilean symmetry

Safe radial interval
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⇡ is large and theory

technically natural
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• How to do in the context of massive gravity?

⌅ Use the quantity
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µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤
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6

6 Scalar-Tensor Theories

Why considering them?

I Naturally arise from string theory

I Important applications to cosmology

Prototype

S =

Z
d

4
x

p
�g


M

2
P l

2
R� 1

2
@µ�@

µ
�� V (�)

�

Canonical kinetic term

I Much more can be done...
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What about derivative scalar self-interactions ?

I interactions involving single derivative of scalars. Call X = @µ⇡@
µ
⇡

– Prototype: DBI action S =
R
d

4
x

p
�g

p
1 +X

– More generally: any function S =
R
d

4
x

p
�g P (X) is fine

EOMs are second order

I interactions including second derivatives of scalars

The Galileons

[Nicolis, Rattazzi, Trincherini]
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5 Galileons from broken gauge invariance

U(1) vector gauge theory: break symmetry through interactions containing derivatives

L = �1

4
Fµ⌫F

µ⌫ + symmetry breaking part

+
Can interactions of the vector longitudinal mode lead to Galileon set-up ?

Galileons are interesting for

• Acceleration of the universe

• Screening e↵ects

• Non-renormalization theorems

,
Task

Realise Galileons as ‘Goldstone bosons’ of broken gauge symmetry

(in appropriate decoupling limit)
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Dark energy

• Current acceleration is compatible with positive cosmological constant

. Impressive fine-tuning is required

• Idea: use new fields besides Einstein gravity to drive acceleration

. Quintessence

Scalar field with appropriate interactions

. Modified gravity

New gravitational d.o.f.’s control the cosmological dynamics

at large scales
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. At small scales (within rV ) non-linear self-interactions become dominant:

Scalar fifth force gets screened

. Scalar has zero mass because of a symmetry: ⇡ ! ⇡ + c+ bµx
µ
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Removing the ghost in decoupling limit

Question: is it possible to UV complete FP such to get

⇧ A lagrangian with no ghosts

⇧ With interactions allowing to implement Vainshtein mechanism

Answer: yes [de Rham-Gabadadze]

Focus on decoupling limit:

only ⌅ self-interactions are kept: isolate problematic helicity-0 mode.

• After applying Stückelberg, the lagrangian always contains at least two derivatives on each �.

⌅ Invariant under Galileon symmetry ⌅ ⇤ ⌅ + c + bµxµ

• Add interactions that

– Raise cut-o� to �3 =
�
m2MPl

⇥1
3

– Assemble terms inGalileon combinations [Nicolis-Rattazzi-Trincherini]

⌅ Corresponding EOMs contain at most two time derivatives!!

L2 = �1

2
(⌃⌅)2

L3 = (⌃⌅)22⌅

L4 = (⌃⌅)2
⇤
(2⌅)2 � (⌃µ⌃⇤⌅)

2
⌅

L5 = (⌃⌅)2
⇤
(2⌅)3 + 2 (⌃µ⌃⇤⌅)

3 � 32⌅ (⌃µ⌃⇤⌅)
2
⌅

• How to do in the context of massive gravity?

⌅ Use the quantity

K ⇤
µ = � ⇤

µ �
⇧
� ⇤
µ �H ⇤

µ

built with metric Hµ⇤ [deRham-Gabadadze-Tolley]

6

Good for Dark Energy! )

Vainshtein

radius

[Nicolis, Rattazzi; Goon, Hinterbichler, Trodden]

Horndenski (1974)

Question

What’s themost general scalar-tensor action leading to 2nd order equations of motion?

where the Gi are arbitrary functions of �, X

• contains up to three powers of @2
�. Flat space ! Galileons

• lot of activity for applications to cosmology, gravity/BHs etc etc

Is this really necessary?

+
Ostrogradsky theorem

Any non-degenerate theory with EOMs of order higher than two

has Hamiltonian unbounded from below

[see e.g. Woodard]

Let’s consider degenerate scalar-tensor theories

Relations defining conjugate momenta can’t be fully inverted:

velocities can’t be expressed in terms of fields and their conjugate momenta

Constraint conditions exist!

In this way new consistent covariant scalar-tensor theories can be found, that propagate

only up to three degrees of freedom

no Ostrogradsky ghost mode

Ostrogradsky ghost

Beyond Horndenski [Gleyzes et al]

Extended Scalar Tensor

[Langlois, Noui; Crisostomi, Koyama, GT; Ben Achour et al]

• Use Hamiltonian approach to systematically find all consistent theories, classifying

them in terms of number of second derivatives of scalar

• New theories found, with interesting consequences for dark energy (growth of struc-

ture) + screening mechanisms (neutron stars etc)

(@2
⇡)n

We don’t know the most general

form of consistent, covariant scalar-tensor theories

propagating up to 3 dofs
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6 Scalar-Tensor Theories

Why considering them?

I Naturally arise from string theory

I Important applications to cosmology
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2

later rediscovered in constructing general covariant extensions of the galileons that lead to at most
second order equations of motion, with the preconception that this requirement was necessary to
avoid Ostrogradski ghosts [10, 11]. Hordenski’s theories can be described by linear combinations
of the following Lagrangians,

LH
2 ≡ G2(φ,X) , LH

3 ≡ G3(φ,X)✷φ , (1.1)

LH
4 ≡ G4(φ,X) (4)R− 2G4,X(φ,X)(✷φ2 − φµνφµν) , (1.2)

LH
5 ≡ G5(φ,X) (4)Gµνφ

µν +
1

3
G5,X(φ,X)(✷φ3 − 3✷φφµνφ

µν + 2φµνφ
µσφν

σ) , (1.3)

where we have used the notation φµ ≡ ∇µφ, φµν ≡ ∇ν∇µφ and X ≡ ∇µφ∇µφ, and a comma
denotes a partial derivative with respect to the argument.

Recently it was realized that requiring second order equations of motion is in fact not manda-
tory and extensions of Horndeski’s quartic and quintic Lagrangians were proposed in [12, 13] (an
earlier example of theory beyond Horndeski was constructed in [14] via the use of disformal trans-
formations). These additional Lagrangians can be written in the form

LbH
4 ≡ F4(φ,X)ϵµνρσ ϵ

µ′ν′ρ′σφµφµ′φνν′φρρ′ , (1.4)

LbH
5 ≡ F5(φ,X)ϵµνρσϵµ

′ν′ρ′σ′
φµφµ′φνν′φρρ′φσσ′ , (1.5)

where ϵµνρσ is the totally antisymmetric Levi-Civita tensor. They lead to equations of motion
that are third order in time derivatives. Interestingly, these extensions beyond Horndeski can
also be recast as generalizations of the “John” and “Paul” terms of the Fab Four [15], where the
corresponding two arbitrary functions of φ acquire a dependence on X as well [16]. These theories
beyond Horndeski lead to a whole range of new phenomena, which have been recently investigated
in several works (see e.g. [17–24]).

Evading the Ostrogradski ghost usually requires to work with a “degenerate” Lagrangian2. In
this sense, flat spacetime galileons can be seen as degenerate theories. Degeneracy can also involve
several variables simultaneously and is the main focus of the present work. To be more specific, we
define a degenerate theory as follows. After introducing auxiliary variables to replace the second
order time derivatives of the Lagrangian by first order time derivatives, the Lagrangian is said to be
degenerate if the kinetic matrix (composed of the coefficients of the kinetic terms) is degenerate. As
we show in this paper, Horndeski theories are degenerate in a trivial way: there is no mixing in the
kinetic matrix between the higher order sector (scalar field) and the metric sector. By contrast, the
extension beyond Horndeski is characterized by a nontrivial degeneracy, which involves a mixing
between the two sectors and explains why the equations of motion are higher order even if the
system remains degenerate.

The central purpose of this paper is to derive, in a systematic way, the degeneracy conditions
for higher derivative scalar theories coupled to gravity. For pedagogical reasons, we first introduce
a toy model with properties that are very similar to those encountered in the scalar-tensor theories
we investigate later. This toy model is sufficiently simple that the equations of motion and the
Hamiltonian formulation can be easily derived and fully analysed.

We then turn to a large class of scalar tensor theories with Lagrangians that depend quadrati-
cally on the second derivatives of the field, i.e. φµν , while the dynamics of the gravitational sector is
described by the Ricci scalar multiplied by an arbitrary function of φ and X. This class of theories
depends on six arbitrary functions of φ and X, and includes the quartic Horndeski and beyond

2 Another approach, familiar in the context of effective field theory, consists in simply discarding Ostrogradski
instabilities when they arise from the perturbative part of the Lagrangian (see e.g. [25]).
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7 Galileons from branes

[de Rham, Tolley]

• Probe brane in Minkowski space: brane position ⇡

gµ⌫ = ⌘µ⌫ + @µ⇡@⌫⇡

DBI action:

• Action is invariant under a symmetry

inherited from 5d Poincaré symmetry

• Generalization

Consider higher dimensional Lovelock invariants + associated Gibbons-Hawking terms

– EOMs for ⇡ remain second order

– Symmetry is still preserved

;

• Symmetry becomes Galilean symmetry �⇡ = vµ x
µ

Take non-relativistic limit @⇡ ⌧ 1 (but still @

2
⇡ large)

ok

??
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2

later rediscovered in constructing general covariant extensions of the galileons that lead to at most
second order equations of motion, with the preconception that this requirement was necessary to
avoid Ostrogradski ghosts [10, 11]. Hordenski’s theories can be described by linear combinations
of the following Lagrangians,

LH
2 ≡ G2(φ,X) , LH

3 ≡ G3(φ,X)✷φ , (1.1)

LH
4 ≡ G4(φ,X) (4)R− 2G4,X(φ,X)(✷φ2 − φµνφµν) , (1.2)

LH
5 ≡ G5(φ,X) (4)Gµνφ

µν +
1

3
G5,X(φ,X)(✷φ3 − 3✷φφµνφ

µν + 2φµνφ
µσφν

σ) , (1.3)

where we have used the notation φµ ≡ ∇µφ, φµν ≡ ∇ν∇µφ and X ≡ ∇µφ∇µφ, and a comma
denotes a partial derivative with respect to the argument.

Recently it was realized that requiring second order equations of motion is in fact not manda-
tory and extensions of Horndeski’s quartic and quintic Lagrangians were proposed in [12, 13] (an
earlier example of theory beyond Horndeski was constructed in [14] via the use of disformal trans-
formations). These additional Lagrangians can be written in the form

LbH
4 ≡ F4(φ,X)ϵµνρσ ϵ

µ′ν′ρ′σφµφµ′φνν′φρρ′ , (1.4)

LbH
5 ≡ F5(φ,X)ϵµνρσϵµ

′ν′ρ′σ′
φµφµ′φνν′φρρ′φσσ′ , (1.5)

where ϵµνρσ is the totally antisymmetric Levi-Civita tensor. They lead to equations of motion
that are third order in time derivatives. Interestingly, these extensions beyond Horndeski can
also be recast as generalizations of the “John” and “Paul” terms of the Fab Four [15], where the
corresponding two arbitrary functions of φ acquire a dependence on X as well [16]. These theories
beyond Horndeski lead to a whole range of new phenomena, which have been recently investigated
in several works (see e.g. [17–24]).

Evading the Ostrogradski ghost usually requires to work with a “degenerate” Lagrangian2. In
this sense, flat spacetime galileons can be seen as degenerate theories. Degeneracy can also involve
several variables simultaneously and is the main focus of the present work. To be more specific, we
define a degenerate theory as follows. After introducing auxiliary variables to replace the second
order time derivatives of the Lagrangian by first order time derivatives, the Lagrangian is said to be
degenerate if the kinetic matrix (composed of the coefficients of the kinetic terms) is degenerate. As
we show in this paper, Horndeski theories are degenerate in a trivial way: there is no mixing in the
kinetic matrix between the higher order sector (scalar field) and the metric sector. By contrast, the
extension beyond Horndeski is characterized by a nontrivial degeneracy, which involves a mixing
between the two sectors and explains why the equations of motion are higher order even if the
system remains degenerate.

The central purpose of this paper is to derive, in a systematic way, the degeneracy conditions
for higher derivative scalar theories coupled to gravity. For pedagogical reasons, we first introduce
a toy model with properties that are very similar to those encountered in the scalar-tensor theories
we investigate later. This toy model is sufficiently simple that the equations of motion and the
Hamiltonian formulation can be easily derived and fully analysed.

We then turn to a large class of scalar tensor theories with Lagrangians that depend quadrati-
cally on the second derivatives of the field, i.e. φµν , while the dynamics of the gravitational sector is
described by the Ricci scalar multiplied by an arbitrary function of φ and X. This class of theories
depends on six arbitrary functions of φ and X, and includes the quartic Horndeski and beyond

2 Another approach, familiar in the context of effective field theory, consists in simply discarding Ostrogradski
instabilities when they arise from the perturbative part of the Lagrangian (see e.g. [25]).
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2 What about degenerate scalar-tensor theories?

Can we find an analogous geometric construction for EST ?

I Build probe brane actions made of powers of extrinsic curvature

SK =

Z p
�g K µ

µ

SK2 =

Z p
�g K ⌫

µ K µ
⌫

. . .

I These actions have symmetries associated with bulk isometries

...but when coupled with gravity, their EOMs have higher order derivatives

I Take ‘ultrarelativistic’ limit @⇡ � 1

symmetry left

when coupled with gravity, one gets degenerate scalar tensor theories

I Good news for model building: we can model models of dark energy/inflation

using EST with underlying symmetry preserving structure of action

?

yes

Take ‘ultra-relativistic’ limit of of actions built with combinations of K ⌫
µ

Does the same work with induced action made with

other combinations of curvature fluctuations? Rµ⌫Rµ⌫
etc?

work in progress....

– 3 –

)

Vainshtein

radius

[Nicolis, Rattazzi; Goon, Hinterbichler, Trodden]

Horndenski (1974)

Question

What’s themost general scalar-tensor action leading to 2nd order equations of motion?

where the Gi are arbitrary functions of �, X

• contains up to three powers of @2
�. Flat space ! Galileons

• lot of activity for applications to cosmology, gravity/BHs etc etc

Is this really necessary?

+
Ostrogradsky theorem

Any non-degenerate theory with EOMs of order higher than two

has Hamiltonian unbounded from below

[see e.g. Woodard]

Let’s consider degenerate scalar-tensor theories

Relations defining conjugate momenta can’t be fully inverted:

velocities can’t be expressed in terms of fields and their conjugate momenta

Constraint conditions exist!

In this way new consistent covariant scalar-tensor theories can be found, that propagate

only up to three degrees of freedom

no Ostrogradsky ghost mode

Ostrogradsky ghost

Beyond Horndenski [Gleyzes et al]

Extended Scalar Tensor

[Langlois, Noui; Crisostomi, Koyama, GT; Ben Achour et al]

• Use Hamiltonian approach to systematically find all consistent theories, classifying

them in terms of number of second derivatives of scalar

• New theories found, with interesting consequences for dark energy (growth of struc-

ture) + screening mechanisms (neutron stars etc)

(@2
⇡)n

– 8 –

)

Vainshtein

radius

[Nicolis, Rattazzi; Goon, Hinterbichler, Trodden]

Horndenski (1974)

Question

What’s themost general scalar-tensor action leading to 2nd order equations of motion?

where the Gi are arbitrary functions of �, X

• contains up to three powers of @2
�. Flat space ! Galileons

• lot of activity for applications to cosmology, gravity/BHs etc etc

Is this really necessary?

+
Ostrogradsky theorem

Any non-degenerate theory with EOMs of order higher than two

has Hamiltonian unbounded from below

[see e.g. Woodard]

Let’s consider degenerate scalar-tensor theories

Relations defining conjugate momenta can’t be fully inverted:

velocities can’t be expressed in terms of fields and their conjugate momenta

Constraint conditions exist!

In this way new consistent covariant scalar-tensor theories can be found, that propagate

only up to three degrees of freedom

no Ostrogradsky ghost mode

Ostrogradsky ghost

Beyond Horndenski [Gleyzes et al]

Extended Scalar Tensor

[Langlois, Noui; Crisostomi, Koyama, GT; Ben Achour et al]

• Use Hamiltonian approach to systematically find all consistent theories, classifying

them in terms of number of second derivatives of scalar

• New theories found, with interesting consequences for dark energy (growth of struc-

ture) + screening mechanisms (neutron stars etc)

(@2
⇡)n

We don’t know the most general

form of consistent, covariant scalar-tensor theories

propagating up to 3 dofs

– 8 –



Question

Do some of these theories admit a geometrical interpretation, which might reveal some

symmetries (recall Galilean symmetry)

Do

– 9 –

Question

Do some of these theories admit a geometrical interpretation, which might reveal some

symmetries (recall Galilean symmetry)

Do

– 9 –

Good for Dark Energy!

Recall lessons from Galileons: let’s think to DE applications
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In terms of the brane position modulus, the inverse metric is then

gµν = ηµν −
∂µπ∂νπ

1 + (∂π)2
, (36)

where in this section, indices are raised and lowered with respect to the Minkowski
metric, unless specified otherwise. The induced extrinsic curvature on the brane is
then Kµν = −γ ∂µ∂νπ, where γ is the Lorentz factor

γ =
1

√

1 + (∂π)2
. (37)

The different contributions to the brane action are simply

Sλ = −λ

∫

d4x
√
−g = −λ

∫

d4x
√

1 + (∂π)2 (38)

SK = −M3
5

∫

d4x
√
−gK = M3

5

∫

d4x
(

[Π]− γ2[φ]
)

(39)

SR =
M2

4

2

∫

d4x
√
−gR =

M2
4

2

∫

d4x γ
((

[Π]2 − [Π2]
)

+ 2γ2
(

[φ2]− [Π][φ]
))

(40)

and

SGB = −β
M3

5

m2

∫

d4x
√
−gKGB

= β
M3

5

m2

∫

d4x γ2
(2

3

(

[Π]3 + 2[Π3]− 3[Π][Π2]
)

+ 4γ2([Π][φ2]− [φ3]) (41)

− 2γ2([Π]2 − [Π2])[φ]
)

,

where we used the same notation as [11], with Πµν = ∂µ∂νπ and square brackets
[...] represent the trace (w.r.t. ηµν) of a tensor. Furthermore we also introduced the
following notation

[φn] ≡ ∂π .Πn . ∂π , (42)

so in particular [φ] = ∂µ∂νπ∂µπ∂νπ.
The higher dimensional origin of these terms ensures that equations of motion

remain at most second order in derivatives, and before providing the exact equation
of motion for the field π, it is worth pointing out the following recursive relations
that exist between each term in the induced action:

δ

δπ

(√
−g
)

= K (43)

δ

δπ

(√
−gK

)

= R (44)

δ

δπ

(√
−gR

)

=
3

2
KGB (45)

δ

δπ

(√
−gKGB

)

=
2

3
LGB4

=
2

3

(

R2 − 4R2
µν +R2

µναβ

)

, (46)
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– 10 –

7 Galileons from branes

[de Rham, Tolley]

• Probe brane in Minkowski space: brane position ⇡

gµ⌫ = ⌘µ⌫ + @µ⇡@⌫⇡

DBI action:

• Action is invariant under a symmetry

inherited from 5d Poincaré symmetry
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symmetry is
δvπ(x) = vµx

µ + π(x)vµ∂µπ(x). (2)

One may check by direct substitution that the Lagrangian shifts by a total deriva-
tive under this transformation. However it is more illuminating to consider the
transformations of the tensor gµν = ηµν + ∂µπ∂νπ. An explicit calculation shows
that

δvgµν = ∂µπ∂νδvπ + ∂νπ∂µδvπ

= ∂µπ(vν + ∂ν(πv
α∂απ)) + ∂νπ(vµ + ∂µ(πv

α∂απ))

= ξαv ∂αgµν + ∂µξ
α
v gαν + ∂νξ

α
v gαµ, (3)

where
ξαv = vαπ(x). (4)

In other words, the transformation on π induces a transformation on the metric that
looks like a field dependent coordinate transformation. Given this, it is clear that
any scalar constructed out of gµν will transform as a scalar

δvS = ξαv ∂αS = vαπ(x)∂αS. (5)

Similarly given the definition of the brane extrinsic curvature:

Kµν = −
∂µ∂νπ

√

1 + (∂π)2
, (6)

one may explicitly check that it transforms as a tensor should

δvKµν = ξαv ∂αKµν + ∂µξ
α
vKαν + ∂νξ

α
vKαµ. (7)

In addition, the tadpole term π in the Lagrangian is accidently invariant because
δvπ is a total derivative δvπ = ∂µ (vµx2/2 + vµπ2/2). Strictly speaking only the
equations of motion are invariant, since one cannot in general neglect the boundary
term unless it is canceled by appropriate boundary operators. This means there
will not in general be a globally conserved charge associated with this symmetry.
However, for most of our discussion this subtlety will not matter. This immediately
tells us what the most general form of the Lagrangian that will be invariant under
the nonlinearly realized ISO(1, 4) symmetry must be of the form

L =
√
−g S(gµν , Rabcd, Kef ,∇g) + A π, (8)

where S is a scalar constructed out of arbitrary functions and covariant derivatives
of the Riemann metric associated with gµν , and extrinsic curvature Kµν . There are
two ways in which matter can couple to this theory. Matter fields χi which are
minimally coupled w.r.t. the metric gµν , Lm(gµν ,χi) must also transform under the
symmetry. For instance for scalars,

δvχ
i = vµπ∂µχ

i. (9)
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Alternatively, this symmetry can be understood ‘geometrically’ in terms of an action for a probe
brane embedded in a higher dimensional bulk, using arguments similar to [12] – further developed
in [13,14] – that we briefly review here, and accommodate to our discussion.

The transformation (35) is associated with a symmetry for a probe brane in 5d flat space, inherited
from a global isometry in five dimensions. In particular, eq. (35) is associated with boosts in five
dimensions. To see this fact more explicitly, we consider a 5d bulk with flat metric

g

(5)
MN

dX

M

dX

N = 

2
0 ⌘µ⌫ dX

µ

dX

⌫ + dy

2
, (36)

where X

5 = y. We introduce a constant parameter 20 in front of the 4d slices in the 5d metric. Still,
the 5d metric is flat, and have the same number of isometries of Minkowski space. As we will discuss
in Section 4, the parameter 0 is associated with the ‘maximal speed’ allowed by causality for motion
along the extra dimension.

A 4d brane embedded in the 5d bulk is characterised by a brane embedding, X

M (xµ), which
maps the four brane dimensions into the five bulk dimensions. We foliate the bulk in terms of slices
y =const; the brane embedding is chosen as

X

µ = x

µ

,

y = ⇡(x) , (37)

and fixes the gauge associated with the freedom to reparameterise the foliation. The scalar field ⇡ is a
modulus which geometrically corresponds to the position of the brane along the fifth bulk coordinate.
See Figure 1.

M4

⇡ = 0

⇡(xµ)

Figure 1: Brane geometry with respect to a bulk foliation y = const.

The brane induced geometry can be deduced from the information we provided. The induced
brane metric is

g

µ⌫

=
@X

M

@x

µ

@X

N

@x

⌫

g

(5)
MN

= 

2
0⌘µ⌫ + @

µ

⇡@

⌫

⇡ . (38)

The matrix inverse of the induced brane metric is

g

µ⌫ =
1



2
0

�
⌘

µ⌫ � �

2
@

µ

⇡@

⌫

⇡

�
, (39)

where recall that � = (20 +X)�1/2. It satisfies the relation

g

µ↵

g

↵⌫

= �

µ

⌫

. (40)

The square root of the metric determinant is

p�g =


3
0

�

. (41)
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In terms of the brane position modulus, the inverse metric is then

gµν = ηµν −
∂µπ∂νπ

1 + (∂π)2
, (36)

where in this section, indices are raised and lowered with respect to the Minkowski
metric, unless specified otherwise. The induced extrinsic curvature on the brane is
then Kµν = −γ ∂µ∂νπ, where γ is the Lorentz factor

γ =
1

√

1 + (∂π)2
. (37)

The different contributions to the brane action are simply

Sλ = −λ

∫

d4x
√
−g = −λ

∫

d4x
√

1 + (∂π)2 (38)

SK = −M3
5

∫

d4x
√
−gK = M3

5

∫

d4x
(

[Π]− γ2[φ]
)

(39)

SR =
M2

4

2

∫

d4x
√
−gR =

M2
4

2

∫

d4x γ
((

[Π]2 − [Π2]
)

+ 2γ2
(

[φ2]− [Π][φ]
))

(40)

and

SGB = −β
M3

5

m2

∫

d4x
√
−gKGB

= β
M3

5

m2

∫

d4x γ2
(2

3

(

[Π]3 + 2[Π3]− 3[Π][Π2]
)

+ 4γ2([Π][φ2]− [φ3]) (41)

− 2γ2([Π]2 − [Π2])[φ]
)

,

where we used the same notation as [11], with Πµν = ∂µ∂νπ and square brackets
[...] represent the trace (w.r.t. ηµν) of a tensor. Furthermore we also introduced the
following notation

[φn] ≡ ∂π .Πn . ∂π , (42)

so in particular [φ] = ∂µ∂νπ∂µπ∂νπ.
The higher dimensional origin of these terms ensures that equations of motion

remain at most second order in derivatives, and before providing the exact equation
of motion for the field π, it is worth pointing out the following recursive relations
that exist between each term in the induced action:

δ

δπ

(√
−g
)

= K (43)

δ

δπ

(√
−gK

)

= R (44)

δ

δπ

(√
−gR

)

=
3

2
KGB (45)

δ

δπ

(√
−gKGB

)

=
2

3
LGB4

=
2

3

(

R2 − 4R2
µν +R2

µναβ

)

, (46)
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in [20] that the pure Galileon theory violates the conditions needed for an analytic
S-matrix.

Following this logic, it merely behooves us to look for all the possible terms which
give rise to second order equations of motion in the actions of the form

S =

∫

d4x
(√

−g S(gµν , Rabcd, Kef ,∇g) +A(π)
)

. (28)

Fortunately this work has already been done for us. All allowed operators must
either correspond to Lovelock terms in 4 dimensions or the Gibbons-Hawking-York
boundary terms associated with Lovelock terms in 5 dimensions [21]. The reason
is that the Lovelock terms are the unique manifestly covariant terms which do not
give rise to higher order equations of motion. Thus the most general induced action
on the probe-brane satisfying our criteria is then

L =
√
−g

(

−λ +
M2

4

2
R−M3

5K − β
M3

5

m2
KGB

)

+A(π) , (29)

where A is the tadpole contribution, whose exact magnitude depends on the bulk
content or additional fields, but whose form is dictated by the symmetries. We have
neglected the 4 dimensional Gauss-Bonnet term since it is purely topological, but it
is understood that in a higher dimensional realization it is expected to be present.
In this action, indices are raised and lowered with respect to the induced metric gµν ,
m is the ratio of the 5 dimensional to the 4 dimensional Planck scales, m = M3

5 /M
2
4 ,

K is the trace of the extrinsic curvature Kµν on the brane and the boundary term
KGB is a combination of order extrinsic curvature terms and the induced Einstein
tensor [22]:

KGB = −
2

3
K3

µν +KK2
µν −

1

3
K3 − 2GµνK

µν . (30)

Since the boundary terms K and KGB arise from the 5 dimensional Lovelock invari-
ant, their projection to the brane is automatically at most second order in derivatives
at the level of the equations of motion. The same is not immediately obvious for
the induced quantities, such as the Scalar Curvature. To convince ourselves that
the equations of motion yield at most 2 derivatives in time, when working in terms
of the induced metric gµν = qµν + ∂µπ∂νπ, let us first assume π = 0. In that case
the restriction to the Lovelock combination ensures that the equations are at most
second order in time derivative, and when working in terms of the ADM decompo-
sition, with lapse N , ds2 = qµνdxµdxν = −N2dt2+ γij(dxi+N idt)(dxj +N jdt), the
equations are of the schematic form

δS

δγij
= fij(γ, γ̇, γ̈, N, Ṅ, N i, Ṅ i) (31)

δS

δN
= f00(γ, γ̇, N

i, Ṅ i) (32)
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symmetry is
δvπ(x) = vµx

µ + π(x)vµ∂µπ(x). (2)

One may check by direct substitution that the Lagrangian shifts by a total deriva-
tive under this transformation. However it is more illuminating to consider the
transformations of the tensor gµν = ηµν + ∂µπ∂νπ. An explicit calculation shows
that

δvgµν = ∂µπ∂νδvπ + ∂νπ∂µδvπ

= ∂µπ(vν + ∂ν(πv
α∂απ)) + ∂νπ(vµ + ∂µ(πv

α∂απ))

= ξαv ∂αgµν + ∂µξ
α
v gαν + ∂νξ

α
v gαµ, (3)

where
ξαv = vαπ(x). (4)

In other words, the transformation on π induces a transformation on the metric that
looks like a field dependent coordinate transformation. Given this, it is clear that
any scalar constructed out of gµν will transform as a scalar

δvS = ξαv ∂αS = vαπ(x)∂αS. (5)

Similarly given the definition of the brane extrinsic curvature:

Kµν = −
∂µ∂νπ

√

1 + (∂π)2
, (6)

one may explicitly check that it transforms as a tensor should

δvKµν = ξαv ∂αKµν + ∂µξ
α
vKαν + ∂νξ

α
vKαµ. (7)

In addition, the tadpole term π in the Lagrangian is accidently invariant because
δvπ is a total derivative δvπ = ∂µ (vµx2/2 + vµπ2/2). Strictly speaking only the
equations of motion are invariant, since one cannot in general neglect the boundary
term unless it is canceled by appropriate boundary operators. This means there
will not in general be a globally conserved charge associated with this symmetry.
However, for most of our discussion this subtlety will not matter. This immediately
tells us what the most general form of the Lagrangian that will be invariant under
the nonlinearly realized ISO(1, 4) symmetry must be of the form

L =
√
−g S(gµν , Rabcd, Kef ,∇g) + A π, (8)

where S is a scalar constructed out of arbitrary functions and covariant derivatives
of the Riemann metric associated with gµν , and extrinsic curvature Kµν . There are
two ways in which matter can couple to this theory. Matter fields χi which are
minimally coupled w.r.t. the metric gµν , Lm(gµν ,χi) must also transform under the
symmetry. For instance for scalars,

δvχ
i = vµπ∂µχ

i. (9)

6



7 Galileons from branes

[de Rham, Tolley]

• Probe brane in Minkowski space: brane position ⇡

gµ⌫ = ⌘µ⌫ + @µ⇡@⌫⇡

DBI action:

• Action is invariant under a symmetry

inherited from 5d Poincaré symmetry
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In terms of the brane position modulus, the inverse metric is then

gµν = ηµν −
∂µπ∂νπ

1 + (∂π)2
, (36)

where in this section, indices are raised and lowered with respect to the Minkowski
metric, unless specified otherwise. The induced extrinsic curvature on the brane is
then Kµν = −γ ∂µ∂νπ, where γ is the Lorentz factor

γ =
1

√

1 + (∂π)2
. (37)

The different contributions to the brane action are simply

Sλ = −λ

∫

d4x
√
−g = −λ

∫

d4x
√

1 + (∂π)2 (38)

SK = −M3
5

∫

d4x
√
−gK = M3

5

∫

d4x
(

[Π]− γ2[φ]
)

(39)

SR =
M2

4

2

∫

d4x
√
−gR =

M2
4

2

∫

d4x γ
((

[Π]2 − [Π2]
)

+ 2γ2
(

[φ2]− [Π][φ]
))

(40)

and

SGB = −β
M3

5

m2

∫

d4x
√
−gKGB

= β
M3

5

m2

∫

d4x γ2
(2

3

(

[Π]3 + 2[Π3]− 3[Π][Π2]
)

+ 4γ2([Π][φ2]− [φ3]) (41)

− 2γ2([Π]2 − [Π2])[φ]
)

,

where we used the same notation as [11], with Πµν = ∂µ∂νπ and square brackets
[...] represent the trace (w.r.t. ηµν) of a tensor. Furthermore we also introduced the
following notation

[φn] ≡ ∂π .Πn . ∂π , (42)

so in particular [φ] = ∂µ∂νπ∂µπ∂νπ.
The higher dimensional origin of these terms ensures that equations of motion

remain at most second order in derivatives, and before providing the exact equation
of motion for the field π, it is worth pointing out the following recursive relations
that exist between each term in the induced action:

δ

δπ

(√
−g
)

= K (43)

δ

δπ

(√
−gK

)

= R (44)

δ

δπ

(√
−gR

)

=
3

2
KGB (45)

δ

δπ

(√
−gKGB

)

=
2

3
LGB4

=
2

3

(

R2 − 4R2
µν +R2

µναβ

)

, (46)
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metric, unless specified otherwise. The induced extrinsic curvature on the brane is
then Kµν = −γ ∂µ∂νπ, where γ is the Lorentz factor

γ =
1

√

1 + (∂π)2
. (37)

The different contributions to the brane action are simply

Sλ = −λ

∫

d4x
√
−g = −λ

∫

d4x
√

1 + (∂π)2 (38)

SK = −M3
5

∫

d4x
√
−gK = M3

5

∫

d4x
(

[Π]− γ2[φ]
)

(39)

SR =
M2

4

2

∫

d4x
√
−gR =

M2
4

2

∫

d4x γ
((

[Π]2 − [Π2]
)

+ 2γ2
(

[φ2]− [Π][φ]
))

(40)

and

SGB = −β
M3

5

m2

∫

d4x
√
−gKGB

= β
M3

5

m2

∫

d4x γ2
(2

3

(

[Π]3 + 2[Π3]− 3[Π][Π2]
)

+ 4γ2([Π][φ2]− [φ3]) (41)

− 2γ2([Π]2 − [Π2])[φ]
)

,

where we used the same notation as [11], with Πµν = ∂µ∂νπ and square brackets
[...] represent the trace (w.r.t. ηµν) of a tensor. Furthermore we also introduced the
following notation

[φn] ≡ ∂π .Πn . ∂π , (42)

so in particular [φ] = ∂µ∂νπ∂µπ∂νπ.
The higher dimensional origin of these terms ensures that equations of motion

remain at most second order in derivatives, and before providing the exact equation
of motion for the field π, it is worth pointing out the following recursive relations
that exist between each term in the induced action:

δ

δπ

(√
−g
)

= K (43)

δ

δπ

(√
−gK

)

= R (44)

δ

δπ

(√
−gR

)

=
3

2
KGB (45)

δ

δπ

(√
−gKGB

)

=
2

3
LGB4

=
2

3
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R2 − 4R2
µν +R2
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7 Galileons from branes

[de Rham, Tolley]

• Probe brane in Minkowski space: brane position ⇡

gµ⌫ = ⌘µ⌫ + @µ⇡@⌫⇡

DBI action:

• Action is invariant under a symmetry

inherited from 5d Poincaré symmetry

• Generalization

Consider higher dimensional Lovelock invariants + associated Gibbons-Hawking terms

– EOMs for ⇡ remain second order

– Symmetry is still preserved

;

Take non-relativistic limit @⇡ ⌧ 1 (but still @
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3.2 Recovering the Galileon

As promised, in the non-relativistic limit (∂π)2 ≪ 1, we recover for free the different
Galileon contributions as derived by hand in [11]:

S2 = SNR
λ = −

λ

2

∫

d4x (∂π)2 (49)

S3 = SNR
K =

M3
5

2

∫

d4x (∂π)2!π (50)

S4 = SNR
R =

M2
4

4

∫

d4x (∂π)2
(

(!π)2 − (∂µ∂νπ)
2
)

(51)

S5 = SNR
GB = β

M3
5

3m2

∫

d4x (∂π)2
(

(!π)3 + 2(∂µ∂νπ)
3 − 3!π(∂µ∂νπ)

2
)

. (52)

Notice that S4 and S5 take a slightly different form than [11], but the expressions are
actually equivalent after noticing that the following combinations are total derivative
in Minkowski, as mentioned in [12]:

Ldiv
4 = 2([Π][φ]− [φ2]) + ([Π]2 − [Π2])(∂π)2 (53)

Ldiv
5 = 2([Π]2 − [Π2])[φ]− 4([Π][φ2]− [φ3]) + ([Π]3 + 2[Π3]− 3[Π][Π2])(∂π2) .(54)

Our derivation has now shed light on one crucial aspect of the Galileon theory
that always appeared remarkable: How could higher derivative operators in the
Lagrangian give rise to conventional second order equations of motion? We now see
that it is precisely because they follow from the special Lovelock combinations. It
is the topological nature of these terms in lower dimensions which is connected to
their equations of motion being second order. This can be seen through the fact
that the expression for these invariants requires the use of the antisymmetric Levi-
Civita symbol, and as shown in [13] this is the crucial property to demonstrating
the well-defined Cauchy problem.

4 Probe brane in Anti-de Sitter

4.1 Induced Action

In general, the bulk contains a cosmological constant which induces a five-dimensional
de Sitter or Anti-de Sitter (AdS) warped geometry. For definiteness, we choose an
AdS bulk, of the form

ds2 = dy2 + e−2y/ℓηµνdx
µdxν , (55)

where the AdS length ℓ is related to the bulk cosmological constant Λ via the 5d
Planck scale M5 and the coupling β to the Gauss-Bonnet terms:

Λ = −
6M3

5

ℓ2

(

1−
2β

ℓ2m2

)

. (56)
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symmetry is
δvπ(x) = vµx

µ + π(x)vµ∂µπ(x). (2)

One may check by direct substitution that the Lagrangian shifts by a total deriva-
tive under this transformation. However it is more illuminating to consider the
transformations of the tensor gµν = ηµν + ∂µπ∂νπ. An explicit calculation shows
that

δvgµν = ∂µπ∂νδvπ + ∂νπ∂µδvπ

= ∂µπ(vν + ∂ν(πv
α∂απ)) + ∂νπ(vµ + ∂µ(πv

α∂απ))

= ξαv ∂αgµν + ∂µξ
α
v gαν + ∂νξ

α
v gαµ, (3)

where
ξαv = vαπ(x). (4)

In other words, the transformation on π induces a transformation on the metric that
looks like a field dependent coordinate transformation. Given this, it is clear that
any scalar constructed out of gµν will transform as a scalar

δvS = ξαv ∂αS = vαπ(x)∂αS. (5)

Similarly given the definition of the brane extrinsic curvature:

Kµν = −
∂µ∂νπ

√

1 + (∂π)2
, (6)

one may explicitly check that it transforms as a tensor should

δvKµν = ξαv ∂αKµν + ∂µξ
α
vKαν + ∂νξ

α
vKαµ. (7)

In addition, the tadpole term π in the Lagrangian is accidently invariant because
δvπ is a total derivative δvπ = ∂µ (vµx2/2 + vµπ2/2). Strictly speaking only the
equations of motion are invariant, since one cannot in general neglect the boundary
term unless it is canceled by appropriate boundary operators. This means there
will not in general be a globally conserved charge associated with this symmetry.
However, for most of our discussion this subtlety will not matter. This immediately
tells us what the most general form of the Lagrangian that will be invariant under
the nonlinearly realized ISO(1, 4) symmetry must be of the form

L =
√
−g S(gµν , Rabcd, Kef ,∇g) + A π, (8)

where S is a scalar constructed out of arbitrary functions and covariant derivatives
of the Riemann metric associated with gµν , and extrinsic curvature Kµν . There are
two ways in which matter can couple to this theory. Matter fields χi which are
minimally coupled w.r.t. the metric gµν , Lm(gµν ,χi) must also transform under the
symmetry. For instance for scalars,

δvχ
i = vµπ∂µχ

i. (9)
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2 What about degenerate scalar-tensor theories?

Can we find an analogous geometric construction for EST ?

I Build probe brane actions made of powers of extrinsic curvature

SK =

Z p
�g K µ

µ

SK2 =

Z p
�g K ⌫

µ K µ
⌫

. . .

I These actions have symmetries associated with bulk isometries

...but when coupled with gravity, their EOMs have higher order derivatives

I Take ‘ultrarelativistic’ limit @⇡ � 1

symmetry left

when coupled with gravity, one gets degenerate scalar tensor theories
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and enjoys the same symmetry as eq. (84). A possible geometrical interpretation for this set-up can be
found considering a probe brane embedded in a five dimensional space time with two time directions.
One is the usual T , the other is a time like (Wick rotated) version of the extra dimensional coordinate
y, that we dub ỹ. The five dimensional metric to consider is

ds

2 = �

2
0 dT

2 + 

2
0 d

~

X

2 � dỹ

2 (87)

We can define – analogously as explained in Section 3.2.1 – an embedding X

µ = x

µ, ỹ = ⇡. Cal-
culations can be carried on straightforwardly following the very same steps as Section 3.2.1, finding
that the action (47) leads to action (86), once substituting the new expressions for induced metric
and extrinsic curvature. While such geometrical derivation of action (86) can be useful for determin-
ing symmetries and dualities for our system, its physical relevance deserves further study, since the
physical meaning of bulk space-times with multiple time directions is not clear to us. On the other
hand, let us point out that theories equipped with two time directions in extra dimensions have been
considered in string/M-theory contexts, see e.g. [47] and references therein.

Expanding the determinants in eqs (84) and (86) we find four scalar Lagrangians in flat space

L1 = ⇤2
p
|X| (88)

L2 = ⇤

✓
[⇧]� 1

X

[�]

◆
(89)

L3 =
1p|X|

✓
[⇧]2 � [⇧2] +

2

X

�
[�2]� [�][⇧]

�◆
(90)

L4 =
1

⇤X

✓
[⇧]3 + 2[⇧3]� 3[⇧2][⇧] +

3

X

�
2[⇧][�2]� 2[�3]� [�][⇧]2 + [�][⇧2]

�◆
, (91)

which describe both the cases of X positive or negative. As before, we use the notation [⇧n] = tr (⇧n)
and [�n] = tr (@⇡⇧n

@⇡). We include an energy scale ⇤ to make explicit the dimension of each
operator. Each of these four Lagrangians enjoys the scalar symmetry

�⇡ = ⇡w

µ

@

µ

⇡ =
1

2
w

µ

@

µ

⇡

2 (92)

with w

µ an arbitrary constant four vector, which leaves the action invariant up to boundary terms.
This transformation lacks the linear ‘coordinate dependent’ part which characterises Galileon sym-
metries (the ‘�⇡ = w

µ

x

µ’) hence the system is qualitatively di↵erent from Galileons, and we do
not reduce to Galileon actions in any ‘small derivative’ limit. Additionally, the four actions are also
connected by a duality, as discussed in Section 3.2 (whose results remain valid in the 0 ! 0 limit).

Taken by themselves, these scalar actions are quite peculiar: there is no limit in which the scalar
has standard kinetic terms, since standard kinetic terms are not compatible with symmetry (92). Some
of these Lagrangians are non analytic, since they contain the square root of X, and all of them contain
powers of 1/X. On the other hand, such scalar theories might make sense when expanded around
some background which solves the equations of motion, or by coupling to other fields like gravity. We
now discuss a simple, concrete example to develop these points further, and to assess the physical
relevance of these systems.
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and [�n] = tr (@⇡⇧n

@⇡). We include an energy scale ⇤ to make explicit the dimension of each
operator. Each of these four Lagrangians enjoys the scalar symmetry
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2 (92)

with w

µ an arbitrary constant four vector, which leaves the action invariant up to boundary terms.
This transformation lacks the linear ‘coordinate dependent’ part which characterises Galileon sym-
metries (the ‘�⇡ = w

µ

x

µ’) hence the system is qualitatively di↵erent from Galileons, and we do
not reduce to Galileon actions in any ‘small derivative’ limit. Additionally, the four actions are also
connected by a duality, as discussed in Section 3.2 (whose results remain valid in the 0 ! 0 limit).

Taken by themselves, these scalar actions are quite peculiar: there is no limit in which the scalar
has standard kinetic terms, since standard kinetic terms are not compatible with symmetry (92). Some
of these Lagrangians are non analytic, since they contain the square root of X, and all of them contain
powers of 1/X. On the other hand, such scalar theories might make sense when expanded around
some background which solves the equations of motion, or by coupling to other fields like gravity. We
now discuss a simple, concrete example to develop these points further, and to assess the physical
relevance of these systems.
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and enjoys the same symmetry as eq. (84). A possible geometrical interpretation for this set-up can be
found considering a probe brane embedded in a five dimensional space time with two time directions.
One is the usual T , the other is a time like (Wick rotated) version of the extra dimensional coordinate
y, that we dub ỹ. The five dimensional metric to consider is

ds
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2
0 dT

2 + 

2
0 d

~

X

2 � dỹ

2 (87)

We can define – analogously as explained in Section 3.2.1 – an embedding X

µ = x

µ, ỹ = ⇡. Cal-
culations can be carried on straightforwardly following the very same steps as Section 3.2.1, finding
that the action (47) leads to action (86), once substituting the new expressions for induced metric
and extrinsic curvature. While such geometrical derivation of action (86) can be useful for determin-
ing symmetries and dualities for our system, its physical relevance deserves further study, since the
physical meaning of bulk space-times with multiple time directions is not clear to us. On the other
hand, let us point out that theories equipped with two time directions in extra dimensions have been
considered in string/M-theory contexts, see e.g. [47] and references therein.
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3 Conclusions

I The structure of scalar-tensor theories is richer than expected: degenerate systems

� We still don’t know the most general theory for massless spin 2 + spin 0 fields

� Cosmologists are very interested to this question, for building new models of

dark energy and inflation

I I presented

– most recent findings about what we know of these theories

– A geometrical approach which makes apparent previously unnoticed

underlying symmetry

TO DO NEXT

I Continue the exploration of geometrical approach by studying ultrarelativistic

limit of brane induced actions made with curvature invariants
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