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Bootstrap programme




Scattering amplitudes

Amplitudes depend on:

On-shell (light-like) momenta pf‘o‘ = )\?A? E i E
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Helicities i { _17_5707571}
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Colour-ordered partial amplitude

A5 (MHY) Functions of
A=——+...4) (NMHV) momenta only




N=4 supersymmetry

On-shell supermultiplet
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MHYV expansion

MAV " MHV



Wilson loops

Naturally come with a dihedral symmetry.

Large N: Colour-ordered MHV amplitudes and Wilson loops coincide!
[Alday, Maldacena], [JMD, Korchemsky, Sokatchev], [Brandhuber, Heslop, Travaglini], [JMD,Henn,Korchemsky,Sokatchev],...

Super Wilson loops for non-MHYV amplitudes.

[Mason, Skinner], [Caron-Huot]

Conformal symmetry of Wilson loop is symmetry of amplitude.



Dual conformal symmetry

Space of light-like polygons stable under conformal transformations.
Conformal symmetry of Wilson loops broken by ultraviolet divergences.
Divergences factorise and exponentiate.

Interesting piece is the conformally invariant finite ‘remainder’.

<tr P exp A> = exp(UV div)exp R
o

Divergences organised so that remainder begins at two loops in pert. theory.
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First conformal invariants at six points: < R = T
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Four and five points fixed!

[Anastasiou, Bern, Dixon, Kosower], [Bern, Dixon, Smirnov], [JMD, Henn, Korchemsky Sokatchev]




Dual conformal symmetry

xr3

Dual variables
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Integrands exhibit symmetry
[JMD, Henn, Smirnoyv, Sokatchev]



Dual conformal symmetry

Ay = Atres [1 ta




Twistors

Zn—l

Best to describe a sequence of intersecting null rays via twistors Z; ¢ CP’

Due to the relation to particle momenta, often called ‘momentum twistors’.
[Hodges]

Zi—i A\ 4
Mo 2k

The corners of the loop map to lines in twistor space  Zi ~
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Twistors
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Polylogarlth

[Chen] [Goncharov], [Brown], .
Classical polylogarithms: Lip (7 / _Lln i Laple)l— - logid —x)

More generally, polylogarithms in many variables:

dfi =N e lesd s PN o0
@ @

The ‘letters’ ¢ run over a finite set of rational functions.

‘Symbol’ recursively defined £ ZS A 1> I®o. Silego) =0

[Goncharoyv, Spradlin,Vergu,Volovich]

Examples: S(Liz(z)) = —-[1 —z)®z], S(og’z)=2[z® z
Integrability: bk Z dfg(bk_l) Adlogop =0
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Cluster algebras




As example
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Quivers




Grassmannian G(4,n)

Can associate a cluster algebra to the Grassmannian G(4,n) [Scott]

Initial cluster given by specified set of 4-brackets (ijkl)

(1234)
N

(1235) — (1236) —» — (123n — 1) — (123n)
NN N ! N\

(1245) — (1256) —» — (12n —2n — 1) — (12n — 1n)
NN N ! N\

(1345) —> (1456) — — (In—3n—-2n-—1) — (In—2n—1n)
NN N ! N\

(2345) (3456) (n—4n—-3n—2n—1) (n—3n—2n—1n)



Grassmannian G(4,n)

Can associate a cluster algebra to the Grassmannian G(4,n) [Scot]
Initial cluster given by specified set of 4-brackets (2jkl)

Mutation generates homogeneous polynomials in 4-brackets

For n = 6, 7 algebras are finite (correspond to A3 and FEj)

For n > 8 algebra is infinite.

Observation: [Golden, Goncharov, Spradlin,Vergu,Volovich]
known two-loop results show that letters are cluster A-coordinates.

Cluster bootstrap ansatz: letters are A-coordinates.

For hexagon: 9 A-coordinates,
For heptagon: 42 of them.



Hexagons

Mutations generate letters,

(1236)(3456) (1356)(2346) (1345)(2456) (1236)

e Iy —

(1346)(2356) ’ (1346)(2356) °  “' ~ (1235)(3456)(1246)

and those related by cyclic rotation of the labels.
Once obtained, any multiplicatively independent set of nine will do.

Topology of mutations is Stasheff polytope.

Can replace 4-brackets with 2-brackets: (1234) — (56)

Space of functions identified with polylogarithms on Mg



Heptagons

For heptagons we generate the following letters

(1234)(1567)(2367) 5
11 = 19237 (1267)(3456) ° =
(1234)(2567) .
2L = 1267)(2345) ° i
 (1567)(2347) .
st o

and those obtained by cyclic rotation of the labels.

(a(bc)(de)(fg)) = (abde){acfg) —

(1(23)(45)(67))

(1234)(1567)
(1(34)(56)(72))

(1234)(1567)

(abfg)(acde)

Unlike in the hexagon case, the space of singularities depends on the choice of

dihedral structure.

Naturally associated to the kinematic space of light-like Wilson loops.



Heptagon symbols

Heptagon symbols:
Now we want to build integrable words from the 42 heptagon letters
Locality: initial letters are a;;

Weight k = 2I

Symbol of heptagon Wilson loop remainder should be a heptagon symbol
Supersymmetry: final letters are as; , as;

Collinear limit: R, — R, —_1 i el



Results

Weight k£ = 2 3 4 5
Number of heptagon symbols 7 42 | 237 | 1288 | 6763 ?
well-defined in the 7 || 6 limit 3 15 98 | 646 ? ?
which vanish in the 7 || 6 limit 0 6 72| 572 ? ?
well-defined for all ¢+1 || ¢ 0 0 1 7 ?
with MHV last entries 0 1 2 1 4
with both of the previous two 0 0 1 0 1

Table 1: Heptagon symbols and their properties.

The symbol of the two-loop remainder function is the only weight 4 heptagon
symbol which is well-defined in all collinear limits.

There is a unique weight 6 heptagon symbol which obeys the final entry and is
finite in all collinear limits.
We conclude this must be the symbol of the three-loop heptagon remainder.



Results

For comparison, hexagon symbols:

Weight k = 1 2 3 4 5 6
Number of hexagon symbols 3 9 20 75 218 | 643
well-defined (hence vanish) in the 6 || 5 limit 0 2 11 44 | 155 | 516
well-defined (hence vanish) for all i+1 || ¢ 0 0 2 12 68 | 307
with MHYV last entries 0 3 7 21 62 | 188
with both of the previous two 0 0 1 4 14 59

Table 1: Hexagon symbols and their properties.

In hexagon case must appeal to further input to fix the Wilson loop.

OPE data or information from Regge limit required.

Heptagon bootstrap more powerful than hexagon one!

Hexagon can be recovered from heptagon by collinear limit.




Steinmann Relations

[Dixon, JMD, Harrington, Macleod, Papathanasiou, Spradlin]
See work of: [Caron-Huot, Dixon, Macleod, von Hippel]




Steinmann Relations

[Dixon, JMD, Harrington, Macleod, Papathanasiou, Spradlin]
See work of: [Caron-Huot, Dixon, Macleod, von Hippel]




Results

Weight k£ = 1 2 3 4 6 7 i

N

16 48 154 467 | 1413 | 4163 | 3026

parity —, flip —

parity -+, flip + 4

parity +, flip — 3 12 43 | 140 | 443 | 1359 | 4063 | 2946

parity —, flip + 0 0 3 14 60 | 210 | 672 | 668
0 0 3 14 60 | 210 | 672 | 669
7

Total 28 | 97| 322 | 1030 | 3192 | 9570 | 7309
Imposing the MHYV final entry condition we find:
» | function at 2 loops

» 2 functions at 3 loops
* 4 functions at 4 loops

In each case there is a unique function with finite collinear limits,
independent of the momentum fraction.

Once again, heptagon bootstrap requires fewer constraints than hexagon
one!



Results

In fact we can even drop the final entry condition!

At three loops, the MHV heptagon and hexagon amplitudes are uniquely fixed
by dihedral symmetry and good behaviour in the collinear limit up to a single
ambiguity (which fails the N=4 final entry condition).

Possibly this ambiguity can be interpreted as a contribution in a theory with
less supersymmetry.

NMHV: Up to three loops also uniquely fixed in a similar manner to MHV
case.



Multi-Regge Kinematics

[Del Duca, Druc, JMD, Duhr, Dulat, Marzucca, Papathanasiou,Verbeek]

We can take a limit where incoming particles | and 2 essentially pass through
almost undisturbed.

The other particles are then widely separated in rapidities:

MBS e s e
This implies a hierarchy among the Mandelstam invariants:
Sy N e S e NS ea G S e Sl S eSS SN e B0
The remaining dependence is through the transverse components of
D N = kl,...,kN_4

p1 P2

PN k‘\r,,4 ]\'_\'_3 kq k.qH1 kp+1 kp kz kl p3



Twistor description of MRK

Equivalent to
multi-soft limit




Mandelstam Regions

Since Multi-Regge kinematics is equivalent to the multi-soft limit, we must
analytically continue to obtain non-vanishing result:

Takeacutin (k, + ...+ kq)2

P1

PN  kn_4 kn-3 kg kg1 kp+1  kp k2 k1




Leading-log formula

Generalised from previous work by [Bartels, Prygarin, Lipatov]

q ng/2 00
R[p q] — 1+ amr[p Q] ( ) tair (—1)iP H Z K/ /+ dvy, Wk | 20
hv - iy _ 2T

k =P NE=—00

q—2
a Ly n h h —h
X |—1+ H’Tk FTE || B | HC’ (Vi Mk, Vi1, Te1) | X9 (Vg—1,Tg-1)
k=p
Ti = \/U2,U3; Impact factors and central emission blocks.

Each log appears
with BFKL

eigenvalue F, ,
Mellin integrals and Fourier sums

Related work: evaluate to single-valued multiple
[Bartels, Schomerus, Sprenger], p0|y|0gal‘lth ms

[Bargheer, Papathanasiou, Schomerus],
[Bargheer],
[Basso, Caron-Huot, Sever],

[JMD, Papathanasiou],
[Broedel, Sprenger]




Cluster structure for MRK

(1234)
Y

(1235) — (1236) —» — (123n — 1) — (123n)

NN N ! N

(1245) — (1256) —» — (12n —2n — 1) — (12n — 1n)

NN N ! N

(1345) —> (1456) —> — (In—-3n—-2n-1) — (In—2n—1n)
N N AN | AN

(2345) (3456) (n—4n—3n—2n—1) (n—3n—2n—1n)

Conf,, (P?) — A, _5 x A,_5 (Single-valued)

(1234)(1256) (1235)(1267) (123n — 2)(12n — 1n)

{
(1256) — — (123n)(12n —2n — 1)

N !

(123n — 1)(12n 2p 45 (1n — 2n — 1n)
(123n — 2)(12 by —3n—2n— 1)
(1245)(3456) (1256)(1345) (4567) (I2n—2n—1){(In—4n—-3n—2)(n—3n—2n—1n)
(1456)(2345) (1245)(1567)(3456) > (12n—-3n—-2){(In—2n—1n)(n—4n—3n—2n—1)

> >
(1236)(1245) (1237)




Cluster structure for MRK

(1234)
Y

(1235) — (1236) —» — (123n — 1) — (123n)

NN N ! N

(1245) — (1256) —» — (12n —2n — 1) — (12n — 1n)

NN N ! N

(1345) —> (1456) —> — (In—-3n—-2n-1) — (In—2n—1n)
N N AN | N

(2345) (3456) (n—4n—3n—2n—1) (n—3n—2n—1n)

Conf,, (P*) = A, _5 X x5 (holomorphic)

(1234)(1256) (1235)

> 1267) (1230 — 2)(12n — 1n)
(1236)(1245) > (1237)

{
(1256) — — (123n)(12n —2n — 1)
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Discussion and Outlook

Using the notion of cluster algebras there is a natural conjecture for the space
of singularities for planar MHV amplitudes/Wilson loops to all orders.

We have tested this structure with three-loop and four-loop seven-point
calculations.

Surprisingly, the bootstrap for the heptagon is actually more powerful than for

the hexagon.
Steinmann relations allow a greater reach in orders in perturbation theory.

The bootstrap calculations require no input from the Wilson loop OPE. This
approach provides a test of OPE conjectures.
Perhaps an alternative formulation of integrability?

Intuitively it feels that the structure should be applicable more generally to
light-like Wilson loops in any weakly coupled conformal gauge theory.

Requires further investigation...



Discussion and QOutlook




