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Motivation

• Analytic S-matrix programme

• Dream goal: define and calculate scattering amplitudes in terms of 
the analytic properties they obey.

• Singularities: poles and cuts correspond to physical processes.

• Properties like unitarity should heavily constrain the results.



Motivation

• N=4 super Yang-Mills the simplest 4d gauge theory.

• Integrability in the planar limit gives even more structure.

• Duality between amplitudes and light-like Wilson loops.

• Analytic structure is more tractable.



Bootstrap programme

• Proceed experimentally:

• Observe that in perturbation theory amplitudes/Wilson loops are 
described by particular classes of functions.

• Make an ansatz in terms of these functions.

• Constrain ansatz with some physical input:

Branch cuts (locality/unitarity), collinear limits, supersymmetry, OPE 
for Wilson loops, Regge limits for amplitudes…



Scattering amplitudes
Amplitudes depend on:

On-shell (light-like) momenta 

Helicities
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N=4 supersymmetry
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Wilson loops
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[Alday, Maldacena], [JMD, Korchemsky, Sokatchev], [Brandhuber, Heslop, Travaglini], [JMD,Henn,Korchemsky,Sokatchev],…

• Naturally come with a dihedral symmetry.

• Large N: Colour-ordered MHV amplitudes and Wilson loops coincide!

• Super Wilson loops for non-MHV amplitudes.

• Conformal symmetry of Wilson loop is symmetry of amplitude.

[Mason, Skinner], [Caron-Huot]
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Dual conformal symmetry
• Space of light-like polygons stable under conformal transformations.

• Conformal symmetry of Wilson loops broken by ultraviolet divergences. 

• Divergences factorise and exponentiate. 

• Interesting piece is the conformally invariant finite ‘remainder’.

D
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E
= exp(UV div) expR

• Divergences organised so that remainder begins at two loops in pert. theory.

• First conformal invariants at six points:

• Four and five points fixed!
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[Anastasiou, Bern, Dixon, Kosower], [Bern, Dixon, Smirnov], [JMD, Henn, Korchemsky Sokatchev]



Dual conformal symmetry
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Integrands exhibit symmetry
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Dual conformal symmetry
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Twistors
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• Best to describe a sequence of intersecting null rays via twistors

• Due to the relation to particle momenta, often called ‘momentum twistors’.
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[Hodges]

Zi 2 CP3

• The corners of the loop map to lines in twistor space

(pi + pi+1 + . . . pj�1)
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Twistors
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Arrange the twistors into a (4 x n) matrix: (ZA
i )

Gives a description of the Grassmannian G(4, n)

Kinematical space identified with:
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Polylogarithms
Classical polylogarithms: Li

n
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[Goncharov, Spradlin, Vergu, Volovich]



Cluster algebras
The letters (singularities) will be dictated by cluster algebras associated to 

• Commutative algebras with distinguished set of generators (cluster variables).

• Variables grouped into overlapping sets (clusters).

• Clusters constructed from initial cluster via a process called ‘mutation’.

Cluster algebras: [Fomin, Zelevinsky] 
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)

n�1



 exampleA2
• Cluster variables:

• Initial cluster: 

• Clusters:

• Mutation:

am , m 2 Z

{a1, a2}

{am, am+1}

{am�1, am} ! {am, am+1}, am+1 =
1 + am
am�1

a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

, a6 = a1 , a7 = a2

Finite number of clusters:

Topology of mutations
 is a pentagon.



Quivers
More generally, consider a quiver diagram, corresponding to a cluster.

Each cluster variable corresponds to node.

Mutation on node    yields a new quiver via the rules:

For each 

add new arrow

reverse all arrows to/from 

delete opposing pairs and returning arrows

i ! k ! j

i ! j

k
ak ! a0k =

1

ak

✓Y

i!k

ai +
Y

k!j

aj

◆

k

A2 1 2 becomesInitial quiver 210

with

Sometimes finite, sometimes infinite.
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Grassmannian G(4,n)
Can associate a cluster algebra to the Grassmannian   

Initial cluster given by specified set of 4-brackets 

[Scott]



Grassmannian G(4,n)
Can associate a cluster algebra to the Grassmannian   

Initial cluster given by specified set of 4-brackets 

Mutation generates homogeneous polynomials in 4-brackets

For               algebras are finite (correspond to      and     )

For            algebra is infinite.

Observation: 
known two-loop results show that letters are cluster A-coordinates.

[Golden, Goncharov, Spradlin, Vergu, Volovich]

Cluster bootstrap ansatz: letters are A-coordinates.

For hexagon: 9 A-coordinates,
For heptagon: 42 of them.

[Scott]



Hexagons 

u1 =
h1236ih3456i
h1346ih2356i , 1� u1 =

h1356ih2346i
h1346ih2356i , y1 =

h1345ih2456ih1236i
h1235ih3456ih1246i

Mutations generate letters, 

and those related by cyclic rotation of the labels.

Once obtained, any multiplicatively independent set of nine will do.

Topology of mutations is Stasheff polytope.

Can replace 4-brackets with 2-brackets:

Space of functions identified with polylogarithms on 

h1234i ! h56i

M0,6



Heptagons

a11 =
h1234ih1567ih2367i
h1237ih1267ih3456i , a41 =

h2457ih3456i
h2345ih4567i ,

a21 =
h1234ih2567i
h1267ih2345i , a51 =

h1(23)(45)(67)i
h1234ih1567i ,

a31 =
h1567ih2347i
h1237ih4567i , a61 =

h1(34)(56)(72)i
h1234ih1567i

For heptagons we generate the following letters

and those obtained by cyclic rotation of the labels.

ha(bc)(de)(fg)i ⌘ habdeihacfgi � habfgihacdei

Unlike in the hexagon case, the space of singularities depends on the choice of 
dihedral structure.

Naturally associated to the kinematic space of light-like Wilson loops.



Heptagon symbols
Heptagon symbols:

Now we want to build integrable words from the 42 heptagon letters

Locality: initial letters are

Weight 

a1i

Symbol of heptagon Wilson loop remainder should be a heptagon symbol

Supersymmetry: final letters are

Collinear limit:  

a2i , a3i

Rn ! Rn�1 (i||i+ 1)

k = 2l



Weight k = 1 2 3 4 5 6

Number of heptagon symbols 7 42 237 1288 6763 ?

well-defined in the 7 k 6 limit 3 15 98 646 ? ?

which vanish in the 7 k 6 limit 0 6 72 572 ? ?

well-defined for all i+1 k i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table 1: Heptagon symbols and their properties.

1

Results 

The symbol of the two-loop remainder function is the only weight 4 heptagon
 symbol which is well-defined in all collinear limits.

There is a unique weight 6 heptagon symbol which obeys the final entry and is 
finite in all collinear limits. 
We conclude this must be the symbol of the three-loop heptagon remainder.



Results 

Weight k = 1 2 3 4 5 6

Number of hexagon symbols 3 9 26 75 218 643

well-defined (hence vanish) in the 6 k 5 limit 0 2 11 44 155 516

well-defined (hence vanish) for all i+1 k i 0 0 2 12 68 307

with MHV last entries 0 3 7 21 62 188

with both of the previous two 0 0 1 4 14 59

Table 1: Hexagon symbols and their properties.

1

For comparison, hexagon symbols:

• In hexagon case must appeal to further input to fix the Wilson loop.

• OPE data or information from Regge limit required.

• Heptagon bootstrap more powerful than hexagon one!

• Hexagon can be recovered from heptagon by collinear limit.



Steinmann Relations 
Consider (for n=6,7):

See work of: [Caron-Huot, Dixon, Macleod, von Hippel]

An = ABDS�like
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Only 2-particle invariants

si,i+1 = x

2
i+2,i

Exponentiated one-loop
formula

En = exp(Rn � 1
4�cuspYn)

Y7 =

X

i

Li2

✓
1� 1

ui

◆
+

1

2

log

✓
ui+2ui+5

ui+3uiui+4

◆
log ui

Y6 =

X

i

Li2(1� ui) +
1

2

log

2 ui

Has no overlapping 
3-particle cuts
�s123�s234E = 0

[Dixon, JMD, Harrington, Macleod, Papathanasiou, Spradlin]



Steinmann Relations 
Consider (for n=6,7):
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[Dixon, JMD, Harrington, Macleod, Papathanasiou, Spradlin]
See work of: [Caron-Huot, Dixon, Macleod, von Hippel]



Results 

Imposing the MHV final entry condition we find:
• 1 function at 2 loops
• 2 functions at 3 loops
• 4 functions at 4 loops

In each case there is a unique function with finite collinear limits, 
independent of the momentum fraction.

Once again, heptagon bootstrap requires fewer constraints than hexagon 
one!



Results 
In fact we can even drop the final entry condition!

At three loops, the MHV heptagon and hexagon amplitudes are uniquely fixed 
by dihedral symmetry and good behaviour in the collinear limit up to a single 
ambiguity (which fails the N=4 final entry condition).

Possibly this ambiguity can be interpreted as a contribution in a theory with 
less supersymmetry.

NMHV: Up to three loops also uniquely fixed in a similar manner to MHV 
case.



Multi-Regge Kinematics
We can take a limit where incoming particles 1 and 2 essentially pass through 
almost undisturbed.
The other particles are then widely separated in rapidities:

p+3 >> p+4 >> . . . >> p+N�1

[Del Duca, Druc, JMD, Duhr, Dulat, Marzucca, Papathanasiou, Verbeek]

s3,...,N >> s3,...,N�1, s4,...,N >> . . . >> s34, s45, ..., sN�1,N >> �s2,...,i

This implies a hierarchy among the Mandelstam invariants:

The remaining dependence is through the transverse components of 

p4, . . . pN�1 = k1, . . . , kN�4



Twistor description of MRK
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Equivalent to 
multi-soft limit



Mandelstam Regions
Since Multi-Regge kinematics is equivalent to the multi-soft limit, we must 
analytically continue to obtain non-vanishing result:

Take a cut in (kp + . . .+ kq)
2



R[p,q]
h1...hN�4

= 1 + a i⇡ r[p,q],(1)h1...hN�4
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Leading-log formula
Generalised from previous work by [Bartels, Prygarin, Lipatov]

Each log appears 
with BFKL 
eigenvalue 

⌧i =
p
u2iu3i

E⌫,n

Impact factors and central emission blocks.

Mellin integrals and Fourier sums 
evaluate to single-valued multiple 

polylogarithms
Related work:
[Bartels, Schomerus, Sprenger],
[Bargheer, Papathanasiou, Schomerus],
[Bargheer],
[Basso, Caron-Huot, Sever],
[JMD, Papathanasiou],
[Broedel, Sprenger]



Cluster structure for MRK
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Confn(P3
) ! An�5 ⇥An�5 (Single-valued)
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Discussion and Outlook
Using the notion of cluster algebras there is a natural conjecture for the space
of singularities for planar MHV amplitudes/Wilson loops to all orders.

We have tested this structure with three-loop and four-loop seven-point 
calculations.

Surprisingly, the bootstrap for the heptagon is actually more powerful than for
the hexagon.
Steinmann relations allow a greater reach in orders in perturbation theory.

Intuitively it feels that the structure should be applicable more generally to 
light-like Wilson loops in any weakly coupled conformal gauge theory.

The bootstrap calculations require no input from the Wilson loop OPE. This 
approach provides a test of OPE conjectures.
Perhaps an alternative formulation of integrability?

Requires further investigation…



Discussion and Outlook
Perturbative data via bootstrap approach allows detailed investigations of 
various limits.

In particular MRK can be fully explored in terms of single-valued 
polylogarithms in momentum variables and also in Mellin space.

Four-loop data allows up to NNNLLA expressions.


