

Physics at CLIC

Lucie Linssen, CERN on behalf of the CLICdp collaboration CERN, EP Seminar, January 24th 2017

With many thanks to my CLIC and CLICdp colleagues for presentation material

outline

- Open questions in physics / high-energy colliders
- The CLIC accelerator
- Experimental conditions at CLIC
- The CLIC detector model
- Physics at CLIC
 - Higgs physics
 - Top quark physics
 - Direct BSM searches
 - Indirect BSM probes
- CLIC timeline
- Summary

open questions in particle physics

Some of the main open questions in particle physics today:

- Full understanding of the Higgs properties and EWSB
 - → hierarchy / naturalness problem
- Why are there three fermion families?
- What is the origin of matter-antimatter asymmetry?
- Full understanding of neutrino masses and oscillations
- What is dark matter?
- What is causing the accelerated expansion of the universe?
- What is gravity?
-

There are many parallel approaches to searching for the answers

.... among which: high-energy particle colliders => pp and/or e⁺e⁻ colliders

Still unclear at what energy scales will we find our answers

pp collisions / e⁺e⁻ collisions

p-p collisions	e ⁺ e ⁻ collisions
 Proton is compound object → Initial state not known event-by-event → Limits achievable precision 	e⁺/e⁻ are point-like → Initial state well defined (√s / polarisation) → High-precision measurements
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	Cleaner experimental environment → Trigger-less readout → Low radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states
High-energy circular pp colliders feasible	High energy (>≈350 GeV) e ⁺ e ⁻ requires linear collider

pp collisions / e⁺e⁻ collisions

e⁺e⁻ events are more "clean"

studies of high-energy e⁺e⁻ colliders

Future Circular Collider (FCC): CERN e⁻e⁺, \forall s: 90 - 350 GeV; pp, \forall s: ~100 TeV

Circumference: 90 - 100 km

luminosity performance e⁺e⁻ colliders

Linear colliders:

- Can reach the highest energies
- Luminosity rises with energy
- Beam polarisation at all energies

Circular colliders:

- Large luminosity at lower energies
- Luminosity decreases with energy

Note: Peak luminosity at LEP2 (209 GeV) was ~10³² cm⁻²s⁻¹

CLIC 2-beam acceleration scheme

High centre-of-mass energy requires high-gradient acceleration

- High gradients feasible in normal conducting structures with high RF frequency (12 GHz)
- Initial transfer from wall plug to beam (klystron) is efficient at lower frequency (~1 GHz)
- To keep power low, apply RF power only at the time when the beam is there.

CLIC uses a 2-beam acceleration scheme at 12 GHz, gradient of 100 MV/m

CLIC layout at 3 TeV

CLIC test facility CTF3

CTF3 successfully demonstrated:

- ✓ drive beam generation
- ✓ RF power extraction
- two-beam acceleration up to a gradient of 145 MeV/m

CTF3 completed its mission in 2016

A new facility starts operating in 2017
(it's based on the current CFT3 probe beam)

CLEAR, Cern Linear Electron Accelerator for Research

CLIC accelerator, some pictures

CLIC mechanical tests of 2-beam module prototype final focus quadrupole

tunable permanent magnet

accelerator structure, 1 disk

brazing of a CLIC structure

cut through a CLIC acceleration structure

Lucie Linssen, EP seminar, January 24, 2017

CLIC staging scenario

New CLIC staging baseline: CERN yellow report: <u>CERN-2016-004</u>

With "affordable" first stage at 380 GeV, focused on Higgs physics and top quark physics

Physics potential best exploited in a staged approach:

• **380 GeV (350 GeV)**, 600 fb⁻¹: precision Higgs and top physics (including top threshold scan)

• **1.5 TeV**, 1.5 ab⁻¹: BSM searches, precision Higgs, ttH, HH, top physics

• **3 TeV**, 3 ab⁻¹: BSM searches, precision Higgs, HH, top physics

Stage	\sqrt{s} (GeV)	$\mathcal{L}_{int} (fb^{-1})$
1	380	500
1	350	100
2	1500	1500
3	3000	3000

Dedicated to top mass threshold scan

Integrated luminosity including commissioning with beam and stops for energy upgrades

Staging can be adapted to possible LHC discoveries

CLIC accelerator parameters

Parameter	380 GeV	1.5 TeV	3 TeV
Luminosity \mathcal{L} (10 ³⁴ cm ⁻² sec ⁻¹)	1.5	3.7	5.9
\mathscr{L} above 99% of \sqrt{s} (10 ³⁴ cm ⁻² sec ⁻¹)	0.9	1.4	2.0
Accelerator gradient (MV/m)	72	72/100	72/100
Site length (km)	11.4	29	50
Repetition frequency (Hz)	50	50	50
Bunch separation (ns)	0.5	0.5	0.5
Number of bunches per train	352	312	312
Beam size at IP σ_x/σ_y (nm)	150/2.9	~60/1.5	~40/1
Beam size at IP σ_z (μ m)	70	44	44
Estimated power consumption* (MW)	252	364	589

Drives timing requirements for CLIC detector

CLIC - 156 ns 20 ms

1 train = 312 bunches, 0.5 ns apart

- not to scale -

^{*}scaled from CDR, with room for improvement

CLIC accelerator environment

Energy deposits

luminosity spectrum

Beamstrahlung → important energy losses right at the interaction point

Most physics processes are studied well above production threshold => profit from full spectrum

Luminosity spectrum can be measured in situ using large-angle Bhabha scattering events, to 5% accuracy at 3 TeV Eur.Phys.J. C74 (2014) no.4, 2833

Fraction Vs/Vs _{nom}	350 GeV	3 TeV
>0.99	68%	36%
>0.9	95%	57%
>0.8	99.1%	68%
>0.7	99.9%	77%
>0.5	~100%	88%

CLIC detector requirements (from physics)

***** momentum resolution:

e.g, $g_{H\mu\mu}$, Smuon endpoint

$$\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \, \text{GeV}^{-1}$$

jet energy resolution:

e.g. W/Z/H di-jet mass separation, ZH with Z→qq

$$\frac{\sigma_E}{E} \sim 3.5 - 5\%$$

(for high-E jets, light quarks)

e.g. c/b-tagging, Higgs BR

$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu \text{m}$$

- ★ angular coverage, very forward electron tagging
- + requirements from CLIC experimental conditions

new CLIC detector model

*** more in upcoming detector seminar ***

return yoke (Fe) with muon-ID detectors

Superconducting solenoid, 4 Tesla

fine grained (PFA) calorimetry, 1 + 7.5 Λ_i , Si-W ECAL, Sc-FE HCAL

silicon tracker, (large pixels / short strips)

Note: final beam focusing is outside the detector

end-coils for field shaping

forward region with compact forward calorimeters

ultra low-mass vertex detector, ~25 μm pixels

beam-induced background rejection (1)

Beam-induced background from $\gamma\gamma \rightarrow$ hadrons can be efficiently suppressed by applying p_t cuts and timing cuts on individually reconstructed particles (particle flow objects)

1.2 TeV background in reconstruction window (>=10 ns) around main physics event

100 GeV background after tight cuts

beam-induced background rejection (2)

Beam-induced background from γγ → hadrons is further reduced by applying adapted jet reconstruction algorithms

Example: **squark study** at $\sqrt{s} = 3$ TeV (with assumed squark mass of 1.1 TeV)

$$e^+e^- \to \widetilde{q}_R\widetilde{q}_R \to q\overline{q}\widetilde{\chi}_1^0\widetilde{\chi}_1^0$$

No yy → hadrons background

With $\gamma\gamma$ → hadrons bkg from 60 bunch crossings

With $\gamma\gamma \rightarrow hadrons\ bkg\ from$ 60 bunch crossings + use of p_t and timing cuts

Traditional Durham-ee jet algorithm inadequate <=> use of "LHC-like" jet algorithms effective

From Eur.Phys.J. C75 (2015) no.8, 379, see also arXiv:1607.05039

the CLIC physics program

- Higgs boson
- Top quark
- BSM (direct and indirect)

Physics benchmark studies use the two CLIC CDR detector models Geant4-based detector simulation and event reconstruction

Note: most results represent statistical accuracy (dominant). Systematic errors studied in a few cases (ongoing)

Note: the staging scenario used for most benchmark studies was a bit different from the new CLIC baseline

stage	٧s	L _{int} (fb ⁻¹)
1	350 GeV	500
2	1.4 TeV	1500
3	3 TeV	2000

Higgs physics at CLIC

Dominant processes:

Higgsstrahlung $\sigma \sim 1/s$ Higgs id. from Z recoil

WW(ZZ) - fusion σ ~ log(s) Large stat. at high E

	350 GeV	1.4 TeV	3 TeV
\mathcal{L}_{int}	$500~\mathrm{fb}^{-1}$	$1.5~{ m ab}^{-1}$	$2~ab^{-1}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$
# ZH events	68 000	20 000	11 000
$\# \; H v_e ar{v_e}$ events	17 000	370 000	830 000
$\#$ He^+e^- events	3 700	37 000	84 000

For unpolarised beams. Hvv increases ×1.8 for -80% e⁻ polarisation (CLIC baseline)

high selection efficiencies!

Higgsstrahlung e⁺e⁻ → ZH @ ~350 GeV

ZH events, selected through **recoil mass** against Z $m_{rec}^2 \approx s + m_Z^2 - 2 \ Vs(E1+E2)$

model-independent measurement

$$\Delta \sigma_{HZ} \sim g_{HZZ}^2$$

$$Z => \mu \mu \quad BR^{\sim}3.5\% \quad \text{very clean} \qquad \Delta(\sigma_{\text{HZ}}) = \pm 3.8\%$$

$$Z => ee \quad BR^{\sim}3.5\% \quad \text{very clean} \qquad \Delta(\sigma_{\text{HZ}}) = \pm 1.8\%$$

$$Z => q\bar{q} \quad BR^{\sim}70\% \quad \text{almost model independent} \quad \Delta(\sigma_{\text{HZ}}) = \pm 1.8\%$$

$$\Delta(g_{HZZ}) = \pm 0.8\%$$

ZH => Hqq access to invisible Higgs decay BR(H=>inv) < 1% @ 90% CL

ZH \rightarrow Hq \bar{q} : better precision at 350 GeV than at 250 GeV or 420 GeV (trade-off between detector resolution and physics background, see next slide)

Higgsstrahlung $e^+e^- \rightarrow ZH @ 250, 350, 420 \text{ GeV}$

simultaneous extraction H => bb,cc,gg @ 350 GeV

bb likelihood versus cc likelihood for different event classes

Simultaneous extraction of 2 production and 3 decay modes

$\Delta(\sigma \times BR)_{SM}/(\sigma \times BR)_{SM}$ at 350 GeV, 500 fb⁻¹

Daggy	Statistical uncertainty	
Decay	Higgsstrahlung	WW-fusion
$H o b \overline{b}$	0.84 %	1.9 %
$H \to c \overline{c}$	10.3 %	14.3 %
$H \rightarrow gg$	4.5 %	5.7 %

Higgs physics above 1 TeV

Vector boson fusion:

e⁺e⁻ → Hvv, e⁺e⁻ → He⁺e⁻

High σ + increased luminosity
Gives access to rare Higgs decays

ttH production:

- Extraction of Yukawa coupling y_t
- Best at Vs above 700 GeV

Studied at 1.4 TeV, 1.5 ab⁻¹

- Fully hadronic (8 jets)
- Semi-leptonic (6 jets + lepton + v)
 Statistical accuracy:
- $\Delta(g_{Htt}) = \pm 4.4\%$ at 1.4 TeV

double Higgs production

- Cross section sensitive to g_{HHH} and g_{WWHH}
- Small cross section (225/1200 evts @ 1.4/3 TeV)
- Large backgrounds
- ⇒ Requires high energy and high luminosity

Most promising final states: bbbbvv and bbWW*vv

 $\Rightarrow \Delta g_{HHH}/g_{HHH} \approx \pm 10\%$ for operation at 1.4 TeV + 3 TeV with polarisation

Process with strong sensitivity to BSM

Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersymmetry	$-2\%^a -15\%^b$
NMSSM	-25%

arXiv:1305.6397

combined CLIC Higgs results

Model-independent

Higgs width is a free parameter, allows for additional non-SM decays

Model-dependent

LHC-like fit, assuming SM decays only. Fit to deviations from SM BR's

Full CLIC program, ~5 yrs of running at each stage (plots assume 80% e- polarisation above 1 TeV):

- Model-independent: down to ±1% for most couplings
- Model-dependent: ±1% down to ± few ‰ for most couplings
- Accuracy on Higgs width: ±3.6% (MI), ±0.2% (MD, derived)

combined CLIC Higgs results

indicative comparison with HL-LHC capabilities

CLIC (and other e⁺e⁻ colliders) can do model-independent measurements

top quark physics

Motivation:

- Top quark is the heaviest known particle
- Yukawa coupling to Higgs boson y_t~1
 - → key to understanding EWSB
- Top quark decays before hadronising
 - → test ground of QCD
- Large loop contrib. to many precision measurements
- Sensitive to many BSM scenarios → a window to BSM
- So far top quark only measured at hadron colliders

Top physics programme currently studied for CLIC:

- Top quark mass measurement through the threshold scan
- Top quark mass measurement through reconstruction
- Electroweak couplings to the top quark @ 380 GeV
- Electroweak couplings to the top quark above 1 TeV
- Yukawa coupling though ttH production
- Measurement of V_{tb} in single top production
- Rare (CP violating) decays
-

threshold scan of top pair production

top mass [GeV]

- Top pair production cross section around the tt̄ threshold
- Resonant-like structure, very sensitive to m_{top} , and α_{s}

- Measurement at 10 different vs, 10 fb⁻¹ each
- Expected precision on 1S mass: ≈50 MeV (dominated by theory NNNLO scale uncertainty)
- Theoretical uncertainty ≈10 MeV when transforming 1S mass to MS scheme

Eur.Phys.J. C73 (2013) 2530

top quark couplings to Z and γ

Top quark pairs are produced via Z/y

New physics would modify the ttV vertex

The general form of the coupling can be described as:

$$\Gamma_{\mu}^{t\bar{t}X}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(\underline{F_{1V}^X(k^2)} + \gamma_5\underline{F_{1A}^X(k^2)}\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(i\underline{F_{2V}^X(k^2)} + \gamma_5\underline{F_{2A}^X(k^2)}\right)\right\}$$

 $X = Z.\gamma$

CP violating term

At a linear collider the **y** and **Z** form factors can be disentangled using beam polarisation, by measuring:

- Production cross section
- Forward-backward asymmetry
- Helicity angle distribution (in leptonic decays)
- ... analysis being improved using b-jet charge distribution

Illustrated in next slides:

- CLIC results at 380 GeV, 500 fb⁻¹
- Better sensitivity to BSM expected for multi-TeV operation

top quark couplings to Z and γ

Expected coupling precision at LHC, ILC (500 GeV) and CLIC (380 GeV)

CP-conserving couplings

CP-violating couplings

M. Vos at ECFA LC 2016

electroweak couplings to top at high Vs

Studied at generator level in an effective operator approach (instead of Form Factor approach)

Sensivitity:

Relative change in crosssection due to non-zero operator coefficient $\Delta\sigma$ (C) / σ / Δ C

=> multi-TeV energies give better access to 4-fermion operators.

Full detector simulation studies of tt production at 1.4 TeV, 3 TeV are ongoing

M. Vos @ TopLC'2016

direct BSM sensitivity

using SUSY as a benchmarking tool

"model I", 3 TeV:

Squarks

Higgs

τ, ũ, ẽ

squarks

neutralinos

Heavy Higgs

"model II", 3 TeV:

- Smuons, selectrons
- Gauginos

"model III", 1.4 TeV:

- Smuons, selectrons
- Staus, Gauginos

Wider capability than only SUSY: reconstructed particles can be charginos interpreted as "states of given mass, spin and quantum numbers"

In general, **O(1%)** precision on masses and production cross sections found

the simplest case: slepton at 3 TeV

Slepton production at CLIC very clean

slepton masses ~ 1 TeV

Investigated channels include

•
$$e^+e^- \to \tilde{\mu}_R^+\tilde{\mu}_R^- \to \mu^+\mu^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

$$e^+e^- \rightarrow \tilde{e}_R^+\tilde{e}_R^- \rightarrow e^+e^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

•
$$e^+e^- \rightarrow \tilde{\nu}_e\tilde{\nu}_e \rightarrow e^+e^-W^+W^-\tilde{\chi}_1^0\tilde{\chi}_1^0$$

- Leptons and missing energy
- Masses from analysis of endpoints of energy spectra

result: $\Delta m/m \le 1\%$

Systematics due to uncertainty on luminosity spectrum studied:

syst. well below stat. error

$$m(\tilde{\mu}_{\rm R})$$
: $\pm 5.6 \,{\rm GeV}$

$$m(\tilde{e}_R)$$
: $\pm 2.8 \,\text{GeV}$

$$m(\tilde{v}_{\rm e}) : \pm 3.9 \, {\rm GeV}$$

$$m(\tilde{\chi}_1^0) : \pm 3.0 \,\text{GeV}$$

$$m(\tilde{\chi}_1^{\pm}):\pm 3.7\,\text{GeV}$$

di-jet masses: gauginos at 3 TeV

Chargino and neutralino pair production

$$m(\tilde{\chi}_1^0) = 340 \,\text{GeV}$$

 $m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^+) \approx 643 \,\text{GeV}$

 separation using di-jet invariant masses (test of PFA)

result: $\Delta m/m \le 1\%$

results of SUSY benchmarks

Table 8: Summary table of the CLIC SUSY benchmark analyses results obtained with full-detector simulations with background overlaid. All studies are performed at a center-of-mass energy of 3 TeV (1.4 TeV) and for an integrated luminosity of 2 ab⁻¹ (1.5 ab⁻¹) [21, 22, 23, 24, 25, 26, 27].

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
3.0	Sleptons	$\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-} \rightarrow \mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ $\widetilde{e}_{R}^{+}\widetilde{e}_{R}^{-} \rightarrow e^{+}e^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	П	$ ilde{\ell}$ mass $ ilde{\chi}^0_1$ mass $ ilde{\ell}$ mass	1010.8 340.3 1010.8	0.6% 1.9% 0.3%
5.0	Sieptons	$\widetilde{\mathbf{v}}_{\mathbf{e}}\widetilde{\mathbf{v}}_{\mathbf{e}} \rightarrow \widetilde{\mathbf{\chi}}_{1}^{0}\widetilde{\mathbf{\chi}}_{1}^{0}\mathbf{e}^{+}\mathbf{e}^{-}\mathbf{W}^{+}\mathbf{W}^{-}$		$\widetilde{\chi}_1^0$ mass $\widetilde{\ell}$ mass $\widetilde{\chi}_1^\pm$ mass	340.3 1097.2 643.2	1.0% 0.4% 0.6%
3.0	Chargino Neutralino	$\begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array}$	II	$\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_2^{0}$ mass	643.2 643.1	1.1% 1.5%
3.0	Squarks	$\widetilde{q}_R\widetilde{q}_R \rightarrow q\overline{q}\widetilde{\chi}_1^0\widetilde{\chi}_1^0$	I	\widetilde{q}_R mass	1123.7	0.52%
3.0	Heavy Higgs	$\begin{array}{c} H^0A^0 \rightarrow b\overline{b}b\overline{b} \\ H^+H^- \rightarrow t\overline{b}b\overline{t} \end{array}$	I	H^0/A^0 mass H^\pm mass	902.4/902.6 906.3	0.3% 0.3%
1.4	Sleptons	$\begin{split} &\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \\ &\widetilde{e}_R^+ \widetilde{e}_R^- \to e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{split}$	III	$\widetilde{\ell}$ mass $\widetilde{\chi}_1^0$ mass $\widetilde{\ell}$ mass $\widetilde{\chi}_1^0$ mass $\widetilde{\chi}_1^0$ mass $\widetilde{\ell}$ mass	560.8 357.8 558.1 357.1 644.3	0.1% 0.1% 0.1% 0.1% 2.5%
1.4	Stau	$\widetilde{v}_{e}\widetilde{v}_{e} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$ $\widetilde{z}^{+}\widetilde{z}^{-} \rightarrow \overline{z}^{+}\overline{z}^{-}\widetilde{z}^{0}\widetilde{z}^{0}$	III	$\widetilde{\chi}_1^{\pm}$ mass	487.6	2.7%
1.4		$ \widetilde{\tau}_{1}^{+}\widetilde{\tau}_{1}^{-} \to \tau^{+}\tau^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} $ $ \widetilde{\tau}_{1}^{+}\widetilde{\tau}_{1}^{-} \to \tau^{+}\tau^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} $ $ \widetilde{\tau}_{1}^{+}\widetilde{\tau}_{1}^{-} \to \tau^{+}\tau^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} $	111	τ̃ ₁ mass	517 487	
1.4	Chargino Neutralino	$\begin{array}{l} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array}$	III	$\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_2^0$ mass	487	0.2% 0.1%

Large part of the SUSY spectrum measured at <1% level

BSM example: Z' via indirect measurement

Minimal anomaly-free Z' model

$$Q_f = g_Y'(Y_f) + g'_{BL}(B-L)_f$$

Generator-level study

Observables:

- Total e⁺e⁻ → μ⁺μ⁻ cross section
- Forward-backward asymmetry
- Left-right asymmetry
 (with ±80% e⁻ polarisation)

If LHC discovers Z' (e.g. for M_{z'}=5 TeV)

CLIC precision measurement of effective couplings

Otherwise:

CLIC discovery reach up to tens of TeV (depending on the couplings

test of QED: precision study of $e^+e^- \rightarrow \gamma\gamma$

Possible deviations from QED cross sections and angular γγ spectrum can test extension of QED (finite electron size, extra dimension, mass of excited electrons..)

Finite electron size => energy cut off Λ

$$\left(\frac{d\sigma}{d\Omega}\right)_{\Lambda_{+}} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Born}} \pm \frac{\alpha^{2}s}{2\Lambda_{\pm}^{4}} (1 + \cos^{2}\theta)$$

=> two back-to-back photons

Events selected with small energy loss due to Beamstrahlung and ISR

Main backgrounds:

ee → ee and ey → ey

So e/γ identification in forward region is important

Fit result: $\Lambda > 6.33 \text{ TeV}$ (or electron size $< 3.1 \times 10^{-18} \text{ cm}$)

Combined LEP data: $\Lambda > 431 \text{ GeV}$ (or electron size $< 4.6 \times 10^{-17} \text{ cm}$)

test of EWSM: vector boson scattering

- Vector boson scattering provides an important test of electroweak symmetry breaking => Sensitive to new physics in the Higgs sector
- Search for additional resonances and anomalous quartic gauge boson couplings
- Deviations from SM parametrised in terms of 2 couplings: F_{SO} , F_{S1}

WW, ZZ study done at generator level with separation of hadronic W and Z decays from full simulation

$$\Delta F_{S0,1} \sim 5 \text{ TeV}^{-4} (@ 3 \text{ TeV})$$

~100 times better than LHC @ 8 TeV

Full detector simulation study ongoing

further indirect assessments

$$ee \rightarrow \gamma + E_T^{miss}$$

Generi**c**

Dark matter study

Only observable: ISR photon

Benchmark study ongoing

SM Effective Field Theory (SM EFT)

Dimension-6 operators, model-independent approach

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i$$

Using e+e- → ZH, Hvv and W⁺W⁻ At three CLIC energy stages

- Study shows high-energy CLIC as a powerful indirect probe for new physics
- Importance of studying HZ at high energy

Minimal Composite Higgs scenario

2-parameter model: Resonance mass ${\it m}_{\it p}$ Coupling SM fermions to EW gauge bosons, ${\it g}_{\it p}$

Comparison of direct and indirect measurements Allowed region above the dashed lines

CLIC/FCC-ee very sensitive to large g_{ρ}

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

Ready for construction; start of excavations

Getting ready for data taking by the time the LHC programme reaches completion

collaborations / announcements

The CLIC studies are carried by two active collaborations:

CLIC accelerator collaboration http://clic-study.web.cern.ch/
CLIC detector and physics collaboration http://clicdp.web.cern.ch/

Together ~80 institutes

Upcoming events, here at CERN:

The CLIC workshop 2017, March 6-10:

https://indico.cern.ch/event/577810/

LC top quark physics workshop 2017, June 7-9:

http://indico.cern.ch/event/595651/

summary

Proton-proton and electron-positron colliders yield complementary information

CLIC offers a wealth of accurate e⁺e⁻ physics measurements CLIC offers an "affordable" first stage at 380 GeV with guaranteed physics CLIC is upgradable up to 3 TeV

It's a powerful tool to address the open questions in particle physics

CLIC is one of the options for CERN after the LHC, next to HE-LHC/FCC-hh/FCC-ee

- Many years of R&D have been invested in CLIC
- Large-scale tests have confirmed the technology
- It is well understood and technically mature, no show-stopper identified
- CLIC can gear up towards construction within a few years

CLIC offers interesting R&D in very active collaborations
Welcome to join!

SPARE SLIDES

CLIC Higgs results ($\sigma \times BR$), 350 GeV

			Statistical precision
Channel	Measurement	Observable	350 GeV
			500fb^{-1}
ZH	Recoil mass distribution	$m_{ m H}$	110MeV
ZH	$\sigma(ZH) \times BR(H \to invisible)$	$arGamma_{ m inv}$	0.6%
ZH	$\sigma(ZH) \times BR(Z \to l^+l^-)$	$g^2_{\rm HZZ}$	3.8%
ZH	$\sigma(ZH) \times BR(Z \to q\overline{q})$	$g^2_{\rm HZZ}$	1.8%
ZH	$\sigma(ZH) \times BR(H \to b\overline{b})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/arGamma_{ m H}$	0.84%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{ m HZZ}^2 g_{ m Hcc}^2 / \Gamma_{ m H}$	10.3 %
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{gg})$		4.5%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \tau^+ \tau^-)$	$g_{ m HZZ}^2 g_{ m H au au}^2/arGamma_{ m H}$	6.2%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g_{ m HZZ}^2 g_{ m HWW}^2/\Gamma_{ m H}$	5.1%
$Hv_e\overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \to b\overline{b})$	$g_{ m HWW}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	1.9%
$Hv_e\overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \to c\overline{c})$	$g_{\mathrm{HWW}}^2 g_{\mathrm{Hcc}}^2 / \Gamma_{\mathrm{H}}$	14.3 %
$Hv_e^{\overline{v}_e}$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times \textit{BR}(H \to gg)$		5.7 %

Table 28: Summary of the precisions obtainable for the Higgs observables in the first stage of CLIC for an integrated luminosity of $500\,\mathrm{fb^{-1}}$ at $\sqrt{s}=350\,\mathrm{GeV}$, assuming unpolarised beams. For the branching ratios, the measurement precision refers to the expected statistical uncertainty on the product of the relevant cross section and branching ratio; this is equivalent to the expected statistical uncertainty of the product of couplings divided by $\Gamma_{\rm H}$ as indicated in the third column.

CLIC Higgs results ($\sigma \times BR$), 1.4+3 TeV

			Statistical precision	
Channel	Measurement	Observable	1.4 TeV 1.5 ab ⁻¹	3 TeV 2.0 ab ⁻¹
$Hv_e \overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	47 MeV	44 MeV
$H\nu_{\rm e}\overline{\nu}_{\rm e}$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to b\overline{b})$	$g_{ m HWW}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	0.4%	0.3%
$Hv_e\overline{v}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to c\overline{c})$	$g_{\mathrm{HWW}}^2 g_{\mathrm{Hcc}}^2 / \Gamma_{\mathrm{H}}$	6.1%	6.9%
$Hv_e\overline{v}_e$	$\sigma(H\nu_{\rm e}\overline{\nu}_{\rm e}) \times BR(H \to gg)$		5.0%	4.3%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}})\times\mathit{BR}(\mathrm{H}\to\tau^{+}\tau^{-})$	$g_{ m HWW}^2 g_{ m H au au}^2/\Gamma_{ m H}$	4.2%	4.4%
$Hv_e\overline{v}_e$	$\sigma(H\nu_e\overline{\nu}_e) \times BR(H \to \mu^+\mu^-)$	$g_{ m HWW}^2 g_{ m Huu}^2/\Gamma_{ m H}$	38%	25%
$Hv_e \overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \to \gamma\gamma)$		15%	10%*
$Hv_e\overline{v}_e$	$\sigma(H\nu_{\rm e}\overline{\nu}_{\rm e}) \times BR(H \to Z\gamma)$		42 %	30%*
$Hv_e\overline{v}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to WW^{*})$	$g_{ m HWW}^4/arGamma_{ m H}$	1.0%	0.7 %*
$H\nu_{e}\overline{\nu}_{e}$	$\sigma(H\nu_e\overline{\nu}_e) \times BR(H \to ZZ^*)$	$g_{\mathrm{HWW}}^2 g_{\mathrm{HZZ}}^2 / \Gamma_{\mathrm{H}}$	5.6%	3.9%*
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	1.8%	2.3 %*
tīH	$\sigma(t\overline{t}H) \times BR(H \to b\overline{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	8.4%	_
$HHv_{e}\overline{v}_{e}$	$\sigma(HHv_e\overline{v_e})$	λ	32%	16%
$HH\nu_{e}^{}\overline{\nu}_{e}$	with -80% e ⁻ polarisation	λ	24 %	12%

Table 29: Summary of the precisions obtainable for the Higgs observables in the higher-energy CLIC stages for integrated luminosities of $1.5\,\mathrm{ab^{-1}}$ at $\sqrt{s}=1.4\,\mathrm{TeV}$, and $2.0\,\mathrm{ab^{-1}}$ at $\sqrt{s}=3\,\mathrm{TeV}$. In both cases unpolarised beams have been assumed. The '-' indicates that a measurement is not possible or relevant at this centre-of-mass energy. Numbers marked with * were extrapolated from $\sqrt{s}=1.4\,\mathrm{TeV}$ to $\sqrt{s}=3\,\mathrm{TeV}$ as explained in the text. For the branching ratios, the measurement precision refers to the expected statistical uncertainty on the product of the relevant cross section and branching ratio; this is equivalent to the expected statistical uncertainty of the product of couplings divided by $\Gamma_{\rm H}$, as indicated in the third column. For the measurements from the $\mathrm{HHv_e}_{\rm Ve}$ process, the measurement precisions give the expected statistical uncertainties on the self-coupling parameter λ .

Higgs mass measurement at high energy

The Higgs mass can be extracted from $e^+e^- \rightarrow vvH \rightarrow vvbb$ events

- Good signal purity in the signal region, dominant background is e+e- → vvqq
- Mass extracted using templates for different Higgs mass hypotheses
- Uncertainty is estimated using toy MC

Dataset	∆m _H , unpolarised	$\Delta m_{_{\mathrm{H}}}$, P(e $^{-}$) = -80%
1.4 TeV	47 MeV	35 MeV
3 TeV	44 MeV	33 MeV
1.4 + 3 TeV	32 MeV	24 MeV

ATLAS & CMS combined (7 and 8 TeV data):

 $M_H = 125.09 \pm 0.21$ (stat.) ± 0.11 (syst.) Phy. Rev. Lett. 114, 191803 (2015)

HL-LHC projection: $\Delta M_H = 50 \text{ MeV}$ arXiv:1310.8361

top quark => rare decays

In the standard model **FCNC top decays** are strongly suppressed:

$$BR(t \to c \ \gamma) \sim 5 \cdot 10^{-14}, \quad BR(t \to c \ Z) \sim 1 \cdot 10^{-14}, \quad BR(t \to c \ H) \sim 3 \cdot 10^{-15}$$

Significant enhancement is possible in many New Physics scenarios

Decay $t \rightarrow cH$ most interesting

- Enhancement up to 10⁻⁵ 10⁻²
- Test of Higgs boson couplings
- Well constrained kinematics
- Seems most difficult for LHC

Run II: BR < 0.46% HL-LHC: BR < 2×10⁻⁴

Full simulation study is ongoing

Parton level simulation results, 2HDM (II)

A.F. Zarnecki @ TopLC'2015

composite Higgs bosons

Allows to probe Higgs compositeness at the 30 TeV scale for 1 ab⁻¹ at 3 TeV (70 TeV scale if combined with single Higgs production)

CLIC BSM discovery reach

New particle / phenomenon	Unit	CLIC reach
Sleptons, charginos, neutralinos, sneutrinos	TeV	≈1.5 TeV
Z' (SM couplings)	TeV	20
2 extra dimensions M_D	TeV	20-30
Triple Gauge Coupling (95%) (λ _γ coupling)		0.0001
Vector boson scattering $\Delta F_{S,0,1}$	TeV ⁻⁴	5
μ contact scale	TeV	60
Higgs composite scale	TeV	70
Electron size (test of QED extension)	cm	3.1 × 10 ⁻¹⁸

CLIC discovery reach for BSM phenomena, studied for 2 ab⁻¹ at 3 TeV. Depending on the exact models used, quoted values generally extend significantly beyond the HL-LHC reach.

CLIC layout at 380 GeV

some linear accelerator basic

The key parameters: Energy and luminosity

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} n_b f_r$$

$$\sigma_{x,y} = \sqrt{rac{eta_{x,y}\epsilon_{x,y}}{\gamma}}$$

The critical steps:

- Create low emittance beams (sources, injector, damping rings, ring to main linac -RTML)
- 2) Acceleration in main linac (high gradient => 100 MV/m)
- 3) Efficient energy transmission to the beam (high power at high frequency, 12 GHz)
- 4) Nano-beams: Squeeze the beam (Beam Delivery System- BDS), i.e. reduce β

CLIC cost estimate

Preliminary estimate (scaled from CDR) with room for improvement. New estimate will be provided for European Strategy Update.

System	Value for 380 GeV (MCHF of Dec 2010)
Main beam production	1245
Drive beam production	974
Two-beam accelerators	2038
Interaction region	132
Civil engineering & services	2112
Accelerator control & operation infrastructure	216
TOTAL	6690

Value for the CLIC accelerator at \sqrt{s} = 380 GeV (11.4 km site length)

