Status report

Tokyo Institute of Technology
Satoshi Kawaguchi
26 September, 2016

Table of contents

• Charge cut ($Q_e = -1$)

Charge cut ($Q_e = -1$)

We imposed the charge cut $(Q_e=-1)$ to reduce a background including a positron in the final state.

Event	After all cuts	
W ⁺ je	737 → 737	
Photon+	$36 \rightarrow 0$	

- W^+je background can't be removed (there isn't a positron from W^+ in the final state).
- Photon+ can be removed.
- Br $(h \to \cancel{E}_T) \sim 5.92\%$ at 2σ level.

Cut optimization (MVA)

We included the charge cut $(Q_e = -1)$ in the preselection and analyzed the signal and the backgrounds by MVA (BDT).

Score >	N_s	N_B	Br[%]
0	6737	75243	8.14
0.05	6109	46242	7.04
0.1	5068	24116	6.13
0.15	3783	10856	5.51
0.2	2432	4092	5.26
0.25	1243	1262	5.72
0.3	382	242	8.14
0.35	35	4	11.4

$$Z = \frac{N_s}{\sqrt{N_b}} = \frac{2432 \times \text{Br}(h \to \cancel{E}_T)}{\sqrt{4092}} \text{In the case of } 2\sigma$$

$$\operatorname{Br}(h \to E_T) \sim 5.26\%$$
 $\operatorname{Br}(h \to E_T) \sim 5.92\%$ (cut-based)

Summary

• When we considered the charge cut $(Q_e=-1)$, ${\rm Br}(h\to E_T)=5.92\%$ (cut based) and ${\rm Br}(h\to E_T)=5.26\%$ (MVA) at 2σ level.