HOM Experiences at the SNS SCL

SPL HOM Workshop CERN June 26, 2009

Sang-ho Kim SNS SCL Area Manager SNS/ORNL

Outline

SNS Intro

• HOM concerns in SNS SRF cavity

Reminder of past histories

• HOM coupler issue

Re-evaluation

- HOM frequency statistics
- SNS beam
- Beam induced signal

• Summary

SNS SRF cavity

Major Specifications: $E_a=15.9$ MV/m at $\beta=0.81$ $E_a=10.2$ MV/m at $\beta=0.61$ & $Q_o> 5E9$ at 2.1 K

НОМ

SNS Cryomodule

Beam power history

Energy and Power on Target

6 Managed by UT-Battelle for the U.S. Department of Energy

Major Parameters achieved vs. designed

Parameters	Design	Individually achieved	Highest production beam
Beam Energy (GeV)	1.0	1.01	0.93
Peak Beam current (mA)	38	40	38
Average Beam Current (mA)	26	24	24
Beam Pulse Length (µs)	1000 1000		670
Repetition Rate (Hz)	60	60	60
Beam Power on Target (kW)	1440	880	880
Linac Beam Duty Factor (%)	6.0	4.0	4.0
Beam intensity on Target (protons per pulse)	1.5 x 10 ¹⁴	1.3 x 10 ¹⁴	1.0 x 10 ¹⁴
SCL Cavities in Service	81	80	80

Managed by UT-Battelle for the U.S. Department of Energy

SPL HOM Workshop at CERN, June 25-26, 2009

SCL status

- SCL is providing a very reliable operation for neutron production following SNS power ramp-up
 - Down time < 5 min/day (<1 trip/day)</p>
- 930 MeV + 10 MeV (energy reserve)
- In-situ plasma processing
 - Initial attempt showed very promising results
 - R&D plan for 1 year

At the Design Phase

SPL HOM Workshop at CERN, June 25-26, 2009

SNS Beam Time-Structure

SPL HOM Workshop at CERN, June 25-26, 2009

National Laborator

HOM analysis for SNS

HOM findings (I)

- Monopoles, dipoles, quadrupoles, sextupoles
 - Up to cutoff frequencies of pipes (~3 GHz)
 - Single cavity, Superstructure
 - r/Q's of all modes as a function of particle velocity
- Mechanical imperfection
 - Random geometrical error based on manufacturing experiences
 - Possibility of having trapped modes

HOM findings (II)

HOM findings (medium)

HOM findings (high)

Geometrical imperfection (for any possible trapped mode)

Deviations from the reference geometry = $\sum_{i=1}^{200} (a_i \cos(i\pi s / L_s) + b_i \sin(i\pi s / L_s))$

; normal to the surface

Ls; total length along the cavity surface, ~1.9 m for high beta cavity $a_i \& b_i$; random coefficient

$$= \frac{1}{2} \frac{$$

An example of the random mechanical perturbation.

Trapped mode is unlikely up to quadrupole modes

Properties of HOM frequency (R. Sundelin's study at Cornell)

- HOM frequency Centroid Error between analysis & real ones
 - Fractional error; (f_{analysis}-f_{real,avg})/f_{analysis} < 0.0038</p>
 - SNS used 0.8 % (for conservative analysis)
 - put frequency centroid on the highest spectral line in the range
- HOM frequency spread

 $\sigma = 0.00109 \times |f_n - f_0|$

- f_o; fundamental frequency, f_n; HOM frequency
- For beam dynamics 20 % of this value were used for conservative analysis

Non-pi fundamental mode

Bunch Tracking (I)

JLab; R. Sundelin, L. Merminga, G. Krafft, B. Yunn, J. Delayan SNS; D. Jeon, J. Wei, M. Doleans, S. Kim

Transverse

– Cumulative effects

- True instability; can occur at almost any frequency
 - No transverse instabilities for Q<10⁸ (20% of σ for f spread)
- Error magnification; worst when an HOM frequency differs by of the order of 1 cavity bandwidth from a beam spectral lines
 - Error magnification~1+0.00062 (0.8 % centroid error)

Longitudinal

- Instability
 - Bunch energy error, bunch-to-bunch variation
 - Can occur at almost any frequency
 - Non-pi fundamental passband can excite oscillations

¹⁸ Managed by UT-Battelle. No instability & significant of energy error at Q<10⁸ for the U.S. Department of Energy

Bunch Tracking (II)

Bunch output energy error With artificially high r/Q for $5\pi/6$ mode

al Laborator

HOM induced power

- Individual cavity issue
- Function of HOM f, r/Q, Q
- Same logic is applied for centroid
- Both analytic & numeric calculation
- Find the possible peak HOM induced power

Beam induced HOM Power (I)

HOM Power

$$P(t) = \frac{V(t)^2}{\left(\frac{r}{Q}\right)Q_{ex}}$$

Time Averaged HOM Power

$$P_{avg} = \frac{1}{T} \int_{t_1}^{t_{1+T}} P(t) dt$$

In continuous frequency domain

Qex

Beam induced HOM Power (II)

22 Managed by UT-Battelle for the U.S. Department of Energy

SPL HOM Workshop

Dangerous Modes at around main spectral lines within the centroid error range (Medium beta cavity)

	1.E+00 -								
R/Q (ohm)	1.E-01 - 1.E-02		T T		*				
	1.E-03 -						node 29 node 31 node 33 node 35		ode 30 ode 32 ode 34 ode 36
	0.	55	0.57	0.59	0.61	0.63	0.65	0.67	0.69
					ĺ	Beta			

Mode	f (Hz)	Qo (due to SS Bellows)
31-1	2.800995E+09	1.5660E+07
31-2	2.800834E+09	1.6235E+07
31-3	2.800863E+09	1.5158E+07
32-1	2.820670E+09	1.9979E+07
32-2	2.820575E+09	1.8349E+07
32-3	2.820466E+09	1.9049E+07
36-1	3.230296E+09	3.5576E+04

Dangerous Modes at around main spectral lines within the Centroid Error range (High beta cavity)

Maximum HOM power of each mode in the Centroid Error range for Maximum r/Q

Damping requirement;

Medium beta cavity \rightarrow 10⁶ High beta cavity \rightarrow 10⁵

The decision for SNS HOM

- No Beam dynamics issue
- Centroid error, f spread & location of cavities; in question
- When $Q>10^5$, 10^6 , there's a concern.
 - HOM power ~ fundamental power dissipation
 - but the probability is very low even under the conservative assumptions
- Extra insurance
 - SNS is the first pulsed proton SC linac
 - Any issues were treated in a very conservative way
 - Ex. Piezo tuner; we've never used them

SNS HOM Coupler

SPL HOM Workshop at CERN, June 25-26, 2009

SNS HOM Coupler

• Coaxial type notch filter scaled from TTF was chosen

CAK RIDGE Patinel Laboratory

28 Managed by UT-Battelle for the U.S. Department of Energy

SPL HOM Workshop at CERN, June 25-26, 2009

HOM coupler development

- Identification of all HOM modes; very good agreement
- Low power tests confirmed its functionality (JLab)
 - Damping; dangerous modes to have Q<~10^5

Fundamental mode thru HOM coupler

Fundamental mode coupling High 10¹⁰~ 10¹² < a few W during pulse

Normal waveform of fundamental mode from HOM ports (y-axis; log scale)

30 Managed by UT-Battelle for the U.S. Department of Energy

Abnormal HOM coupler signals (RF only, no beam)

1~5 Hz

30 Hz

Electron activities (MP & discharge; observations under close attention)

Problems (II)

32 Managed by UT-Battelle for the U.S. Department of Energy

SPL HOM Workshop at CERN, June 25-26, 2009

Problems while running RF only

Any electron activity (multipacting, burst of field emitter, etc)

 \rightarrow Destroy standing wave pattern (or notching characteristics)

→Large fundamental power coupling

→Feedthrough/transmission line damage (most of attenuators were blown up)
→Irreversible

33 Managed by UT-Battelle for the U.S. Department of Energy

SPL HOM Workshop at CERN, June 25-26, 2009

National Laboratory

Turn-on and High power commissioning

- First turn on must be closely watched and controlled (possible irreversible damage)
 - Initial (the first) powering-up, pushing limits, increasing rep. rate (extreme care, close attention)
 - Aggressive MP, burst of FE \rightarrow possibly damage weak components
 - Similar situation after thermal cycle (and after long shut down) too) \rightarrow behavior of the same cavity can be considerably different from run to run
- Subsequent turn-ons (after long shut-down) also need close attention: behavior of the same cavity can be considerably different from run to run \rightarrow gas redistribution
- Cryomodules/strings must be removed and rebuilt if vented/damaged SPL HOM Workshop at CERN, June 25-26, 2009

Limited by Fundamental mode in HOM coupler

- Large fundamental mode coupling
 - 11b; repaired at JLab but non-operable from the beginning, no notch
 - 19b; March 06 turned off (10 W coupling at 1 MW/m)
 - 3 cavities; operable but limited by HOM power
 - Not related with damage, just worse location of notching freq.
- 6 cavities; abnormal waveforms about '0' coupling
 - Seems to be a (partial) disconnection in feedthrough/cable in CM
 - May have leak
- beam line vacuum leak
 - CM12
 - Largest field emission
 - Feedthrough damaged?

Re-evaluation

SPL HOM Workshop at CERN, June 25-26, 2009

Re-evaluation of necessities for HOM couplers

- Same arguments on BBU and instability
 - Stainless steel bellows and fundamental power coupler \rightarrow Q < 10⁸
- What is the possibility that one can have high HOM induced power?
 - HOM verifications
 - HOM statistics
 - Beam induced signal

HOM frequency measurement at 4.4 K (between HOMA & HOMB)

Frequency measurement of the dangerous modes for all cavities in the linac tunnel

	Medium b	eta cavity	High beta cavity			assumption	
Mode	31	32	25	35	36	for analysis	
Average (GHz)	2.81197	2.83017	2.41587	2.81383	2.83018		
Sigma (MHz)	3.19626	3.33151	1.54211	2.09127	2.71721		
Analysis (GHz)	2.80100	2.82050	2.41400	2.81550	2.83030		
sigma/(fn-fo)	0.00159	0.00165	0.00096	0.00104	0.00134	0.00022	
fractional centroid error	-0.00392	-0.00343	-0.00077	0.00059	0.00004	0.008	
Out of conce 2.8175 GHz			ern	Oi 2.8	ut of conce 8175 GHz	ern	

In addition, to have an estimation of HOM frequency shift at 2K, tests have been done for some high beta cavities by changing tuner position (~60 kHz) Frequency changes \rightarrow less than ~400 kHz

Zoom-in

The Q's of modes are less than about ~10⁷ due to the damping on the SS bellows, there's no macro-pulse resonance.

Peak value is more meaningful.

In following pages frequency distributions are plotted on the peak power spectral lines. Beam current (38 mA peak) in the following examples

Zoom-in (Mode 31 Medium beta)

Only 5 cavities have mode 31 in +/-2.5 MHz from main spectral line (2.8175 GHz). (Mode 25 of other 28 cavities are below 2.815 GHz) \rightarrow out of concern. Q's <~10^7 (with HOM couplers 10^4) Only main spectral line will be a concern. Presently all HOM's are far away from the dangerous beam spectral line.

Zoom-in (Mode 25 High beta)

Peak power at maximum r/Q (~0.35 Ohm)

All Mode 25's are within +/-3.5 MHz from main spectral line (2.415 GHz). FPC coupling \rightarrow at most 10^5 (with HOM coupler 10^3) The main spectral line and the neighboring ones will be a concern Presently all HOM's are far away from the dangerous beam spectral line.

Zoom-in (Mode 35 High beta)

Peak power at maximum r/Q (~0.4 Ohm)

16 cavities have mode 35 in +/-2.5 MHz from main spectral line (2.8175 GHz). Q's <10^7 (with HOM coupler 10^{4})

Only first midi-pulse sub spectral line will be a concern.

Presently all HOM's are far away from the dangerous beam spectral line.

Another concerns

w/ Beam (no measurable HOM signals from beam was observed)

Direct wakefield, just showing beam time-structure including frequencies higher than the cut-off frequency

Decision in 2007

Take out feedthrough as needed

Repair (so far 2 CMs were taken out from the tunnel)

- 19b
 - TDR measurement & comparison; almost shorted
 - Trace of discharge
 - Dimension looks OK but large coupling
 - HOM feed through removed
 - Very aggressive electron activity at the HOM coupler
 - Recovered; back in the tunnel in Feb. 08
- CM12; beam line vacuum leak
 - 12a and 12d had leaks at the feedthroughs (four out of eight)
 - HOM feedthroughs are removed and back to service in Feb. 09

SNS beam

Bunch fluctuation

Best conservative guessing; σ~0.3 % (1% will be enough for analysis)

48 Managed by U1-Battelle for the U.S. Department of Energ

SPL HOM Workshop at CERN, June 25-26, 2009

CINILD GHL National Laboratory

SNS beam time-structure

Managed by UT-Battelle for the U.S. Department of Energy

SPL HOM Workshop at CERN, June 25-26, 2009

National Laborator

Chopper imbalance

• Every 4th midi pulse; rising is slower

40-50 dB less than main line; negligible

Beam Experiences

Beam loss

- Much Less than 1 W/m in average
- Not a show stopper
- Energy jitter σ ~1 MeV (from other sources)
- No dependencies on beam loss
 - Beam current
 - Pulse length
 - Pulse repetition rate
 - As tuning is getting better, less loss/C

Summary

- SNS HOM concerns & history
 - Beam breakup & instability; no issue
 - HOM power is the main reason for SNS to have HOM coupler
- Availability & Reliability; Most Important Issue
 - HOM couplers in SNS have been showing deterioration/failure as reported
 - Reliability & availability of SNS SRF cavities will be much higher w/o HOM coupler
- More realistic analysis with actual frequency distributions measured.
 - Probabilities for hitting dangerous beam spectral lines are much less.
- Future concerns
 - HOM feedthroughs will be taken out as needed
 - PUP cryomodule
 - At least will not have HOM feedthroughs for cavities we already have
 - Will not have HOM couplers for new cavities

