

Status and Plans of the AWAKE Experiment

Edda Gschwendtner for the AWAKE Collaboration

SPSC 18 October 2016

Outline

- Introduction
- AWAKE Facility and Equipment
- AWAKE Beam Commissioning
- Electron Acceleration Status
- AWAKE Run 2 after LS2
- Long-Term Perspectives for Proton-Driven Plasma Wakefield Accelerators
- Summary

Proton Drivers for Plasma Wakefield Acceleration

- Proton drivers: large energy content in proton bunches → interesting for plasma wakefield accelerators
- Drive beams:
 - Lasers: ~40 J/pulse
 - Electron drive beam: 30 J/bunch
 - Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch
- Protons drives wakefields over much longer plasma lengths → to reach high energies of a witness beam possible in few stages.
- But: need short bunches → self-modulation instability

Modulated Proton Bunch

- Drive beam for AWAKE: 400 GeV/c SPS proton beam
- SPS longitudinal beam size ($\sigma_z = 12$ cm) is much longer than plasma wavelength ($\lambda = 1$ mm)
- → AWAKE Experiment is based on **self-modulation instability**
 - Modulate long bunch to produce a series of 'micro-bunches' in a plasma with a spacing of plasma wavelength $\lambda_{\rm p}$.
 - → Strong self-modulation effect of proton beam due to transverse wakefield in plasma
 - → Resonantly drives the wakefield
 - → Modulation should be seeded (with laser in AWAKE)

AWAKE

AWAKE Collaboration: 16+3 Institutes world-wide:

Collaboration members:

- John Adams Institute for Accelerator Science
- Budker Institute of Nuclear Physics & Novosibirsk State University
- CERN
- Cockcroft Institute
- DESY
- Heinrich Heine University, Düsseldorf
- Instituto Superior Tecnico
- Imperial College
- Ludwig Maximilian University
- Max Planck Institute for Physics
- Max Planck Institute for Plasma Physics
- Rutherford Appleton Laboratory
- TRIUMF
- University College London
- University of Oslo
- University of Strathclyde

Associated members:

- Ulsan National Institute of Science and Technology (UNIST), Korea
- Wigner Institute, Budapest
- Swiss Plasma Center group of EPFL

AWAKE at CERN

- Advanced Proton Driven Plasma
 Wakefield Acceleration Experiment
 - Final Goal: Design high quality & high energy electron accelerator based on acquired knowledge.
- Proof-of-Principle Accelerator R&D experiment at CERN
- Approved in August 2013
 - First beam end 2016

AWAKE Timeline

AWAKE: Experimental Program

Phase 1: Understand the physics of self-modulation instability processes in plasma.

Self-modulated proton bunch resonantly driving plasma wakefields.

J. Vieira et al PoP 19063105 (2012)

AWAKE Experimental Program

- Phase 1: Understand the physics of self-modulation instability processes in plasma.
- Phase 2: Probe the accelerating wakefields with externally injected electrons.

Outline

- Introduction
- AWAKE Facility and Equipment
- AWAKE Beam Commissioning
- Electron Acceleration Status
- AWAKE Run 2 after LS2
- Long-Term Perspectives for Proton-Driven Plasma Wakefield Accelerators
- Summary

AWAKE Planning 2016

ioning

AWAKE physics

Sa

Su

AWAKE Proton Beam Line

Parameter	Protons
Momentum [MeV/c]	400 000
Momentum spread [%]	± 0.035
Particles per bunch	3.10^{11}
Charge per bunch [nC]	48
Bunch length [mm]	120 (0.4 ns)
Norm. emittance [mm·mrad]	3.5
Repetition rate [Hz]	0.033
1σ spot size at focal point [μ m]	200 ± 20
β -function at focal point [m]	5
Dispersion at focal point [m]	0

Proton beam line fully installed (Magnets, Instrumentation, Vacuum) **Hardware commissioning** finished

Laser and Laser Line

- Laser beam line to plasma cell
 - $-\lambda = 780 \text{ nm}$
 - t pulse = 100-120 fs
 - E = 450 mJ
- Diagnostic beam line ("virtual plasma")
 - $-\lambda = 780 \text{ nm}$
 - t pulse = 100-120 fs,
 - $E \approx 5 \text{ mJ}$
- Laser beam line to electron gun (to be installed in 2017)
 - $-\lambda = 260 \text{ nm}$
 - t pulse = 0.3-10 ps
 - $E = 0.5 \, \text{mJ}$

- **Laser system installed** and **commissioned**:
 - Laser, compressor, safety shutters, beam dumps, mirrors
 - Control system → integrated in CERN control system
 - Lots of efforts in commissioning of laser itself

Laser and Laser Line

AWAKE RF Synchronization

- **Deliver wide range of RF signals** for laser, proton and electron beams
- Precision trigger pulses for beam instrumentation
- Active link stabilization to the ps-level for 3km transmission from AWAKE to BA3

RF Hardware Development and Installation

Link compensation

Main divider, RF trains

AWAKE

Distribution, frac. divider

TSG40 BA3/Faraday Cage

Synchro crate

AWAKE crate

- 1. Use signals from AWAKE
 - ✓ All frequencies in correct range
- 2. Coarse alignment of SPS proton bunch and laser pulse
 - ✓ Proton bucket selection mechanism in AWAKE LLRF validated
- 3. Fine phase of protons at SPS extraction (within one 'half bucket')
 - ✓ Temporary set-up works as expected

Self-Modulation Instability Detectors

Measurements in the HiRadMat Facility

reconstruct the saturation point of the SMI.

→ **Defined the choice** for the BTV screens (1mm Chromox Al₂O₃:CrO₂)

Installed and commissioned

HiRadMat setup

Chromox screen

Measured proton beam on BTV2

Self-Modulation Instability Detectors

Installed and commissioned

OTR/CTR table with installation

Light transport to streak camera

Streak camera

Plasma Cell

Rubidium Vapour Source

- Density adjustable from **10**¹⁴ **10**¹⁵ cm⁻³, 10 m long, 4 cm diameter
- Plasma formed by field ionization of Rb
 - Ionization potential Φ_{Rb} = 4.177eV
 - above intensity threshold ($I_{ioniz} = 1.7 \times 10^{12} \text{W/cm}^2$) 100% is ionized.
- System is oil-heated ~ 210° C
 - \rightarrow keep temperature uniformity at $T_{op} \pm 0.1$ [°C] over the 10 [m] cell length

Why this Complex Plasma End Flange?

- → New solution: continuous flow through small aperture
- → 2016: final design and manufacturing

Plasma Cell: Current Status

10m long plasma cell installed in Feb 2016 For beam commissioning: Connected to vacuum system with spare vacuum tube

Plasma Cell End Flange Integration

Plasma cell end flange installation

AWAKE Plasma End Flanges

Delivered to CERN in September 2016

Clean Room Activities:

- UHV vacuum reception tests
- Alignment

Plasma End Flanges in AWAKE Tunnel

Installed and aligned 17 October 2016

EHN1 Surface Plasma Cell Test Area

Main activities

• Control system: integration and test

Probes calibration

Rb handling processes: testing and rehearsal before

Rb will be installed in the tunnel

Main Glove box

AWAKE Control System

Built on architecture provided by the CERN accelerator controls group.

Strong collaboration between **CERN controls groups, CERN equipment groups and institutes** to develop technical solutions for integration of AWAKE specific equipment.

→

Validated during dry-run and commissioning run

Outline

- Introduction
- AWAKE Facility and Equipment
- AWAKE Beam Commissioning
- Electron Acceleration Status
- AWAKE Run 2 after LS2
- Long-Term Perspectives for Proton-Driven Plasma Wakefield Accelerators
- Summary

AWAKE Planning 2016

ioning

AWAKE physics

Sa

Su

Proton and Laser Beam Commissioning 2016

Results Proton Beam Commissioning

Proton beam line commissioned and running stable with full intensity and matching the specifications

Results Laser Beam Commissioning

Merging mirror scan across the proton beam

Operational Point: 11 mm No losses on BLMs even with full intensity of 3E11 protons

Results Laser Beam Commissioning

Transversal alignment of proton and laser beam (spatial overlap)

Laser positioned on proton beam references to within 300 microns

Result Proton and Laser Beam Synchronization

→ SPS proton beam synchronized with AWAKE laser within ~20ps accuracy

What We Want to See During Physics Run Dec. 2016

Proton beam undergoes Self-Modulation Instability when passing through plasma

Outline

- Introduction
- AWAKE Facility and Equipment
- AWAKE Beam Commissioning
- Electron Acceleration Status
- AWAKE Run 2 after LS2
- Long-Term Perspectives for Proton-Driven Plasma Wakefield Accelerators
- Summary

Electron Source in AWAKE

- **Electron source design finished**, construction of hardware ongoing
- Waveguide system: launched production
- Shielding designed and decided to have a separate access zone for the electron source
- **-**
- Dismantling of PHIN will start next month

Collaborations for Electron Source

Good progress in collaborations:

- TRIUMF BPM's and Faraday Cup:
 - First successful test in CALIFES
- Pepper pot from Manchester:
 - Designed, most of equipment ordered
- Booster structure together with Lancaster and Cockcroft
 - fabrication, prototypes accepted

36

Triumf BPM Pepper pot Booster structure

Status of the Electron Beam Line

- Layout, specifications frozen
- Magnets, power converters ordered
- Cabling for BTVs done

Electron Spectrometer

- **Design of the light transport line** from the spectrometer screen to the CCD camera done
 - Spectrometer vacuum window design: 2mm Al
 - \rightarrow no risk of buckling of the window
 - → scattering of electrons negligible compared to camera resolution

Electron Phase Master Schedule

Outline

- Introduction
- AWAKE Facility and Equipment
- AWAKE Beam Commissioning
- Electron Acceleration Status
- AWAKE Run 2 after LS2
- Long-Term Perspectives for Proton-Driven Plasma Wakefield Accelerators
- Summary

AWAKE Run 2 and Beyond

AWAKE Run 1 until LS2: proof-of-concept experiment – fully funded

AWAKE Run 2:

Goals:

- Accelerate an electron beam, while preserving beam quality as well as possible
- Demonstrate scalability of the AWAKE concept

Requirement:

- Compressed proton beam in SPS
- Sustain gradient in SMI wake over long distance → density step for freezing modulation
- Short electron bunch with higher energy for loading wakefield
- Scalable length plasma sources

Run 2: Example of Simulation Studies

→ Freezing the modulation:

- Wakefield amplitude quickly drops after the beam gets modulated
- Remedy: control the wave phase by the plasma density profile

Other Simulation studies:

- Emittance preservation, tolerances, staging
- Reach %-level of energy spread of the electron beam with beam loading.
- Typical electron beam parameters:
 - 40 60 μ m (100 fs) bunch length
 - Few 100 A peak current
 - > 50 MeV Injection energy

Run 2: Options for Electron Injector

Modify phase 2 injector (S-band)

Can Run 1 AWAKE injector (PHIN S-band photo-injector) be modified to provide 50 MeV and 400 A, within space constraints?

Modify phase 2 injector, upgrade with X-band

X-band structure? ~60 MV/m gives required boost **X-band gun?** Based on best SLAC results could provide required energy and current in available space. Requires development work.

Laser wakefield acceleration injector

- very short bunches possible (few um)
- compact
- AWAKE energy requirement (< 100 MeV) relaxed with respect to state-of-the-art (4 GeV)
- → collaboration with LWFA-experts initiated

Run 2: Scalable Plasma Sources

Helicon development

quartz glass tube with diagnostic ports

CO₂ interferometer magnetic field coils

m=+1 half-turn helical antennas

- Does not need laser ionization
- Fully modular (no gaps)
- Required density reached
- Uniformity (spatial, temporal) needs work
- Need to move from prototype to AWAKE-compatible technology
 - → Collaboration between MPP Greifswald, EPFL SPC and CERN is being set up

Gas discharge development

3m prototype developed by Imperial College and IST (Lisbon) Construction of prototype is pending funding

Outline

- Introduction
- AWAKE Facility and Equipment
- AWAKE Beam Commissioning
- Electron Acceleration Status
- AWAKE Run 2 after LS2
- Long-Term Perspectives for Proton-Driven Plasma Wakefield Accelerators
- Summary

Fixed Target Experiments with High Energy Electron Beam

So far, no experimental hints on particle nature of dark matter.

Interest in low-mass particle solutions increasing; e.g., dark photons.

Light shining through walls experiments ...

Here, use electron beam.

NA64: expect 10⁶ electrons/spill; 10¹² electrons for 3 months

AWAKE-like electron beam driven by SPS proton bunch. Assuming 10⁹ electrons/bunch, would give **3 orders of magnitude** increase.

M. Wing, Physics Beyond Colliders Kickoff Workshop, 7/Sep/2016, CERN

Physics with an Electron-Proton or Electron-Ion Collider

LHeC-Like:

- Focus on QCD: Large cross sections → low luminosity enough (HERA level)
- Many open physics questions!
- → High energy ep collider: E_e up to O(50 GeV), colliding with LHC proton;
- \rightarrow e.g. E_e = 10 GeV, Ep = 7 TeV, \sqrt{s} = 530 GeV already exceeds HERA cm energy.

Create ~50 GeV electron beam within 50–100 m of plasma driven by SPS protons, But luminosity < 10³⁰ cm⁻² s⁻¹.

VHEeP:

- Choose $E_e = 3$ TeV as a baseline and with $E_p = 7$ TeV yields $\sqrt{s} = 9$ TeV. Can vary.
- Centre-of-mass energy ~30 higher than HERA.
- Reach in (high) Q² and (low) Bjorken x extended by ~1000 compared to HERA.
- Opens new physics perspectives
- Luminosity $\sim 10^{28} 10^{29}$ cm⁻² s⁻¹ gives ~ 1 pb-1 per year.

Strategy for Run 2 and Beyond

- Created a Run 2 Coordination Package
 - Define goals, technology and work-packages
- Gives opportunity to new institutes interested in joining.
- CERN AWAKE Project Leader Mandate Extended:
 - Leading the CERN AWAKE project towards and during Run 2
 - Coordinating and organizing the general proton driven plasma wakefield acceleration studies at CERN
 - Coordinating all resources associated with the AWAKE project and the proton driven plasma wakefield studies.
- → Have a first proposal of Run 2 program ready by end 2017

Summary

- Great progress in installation and commissioning of AWAKE Run 1
- On track for first AWAKE physics in 1st week in December 2016
- On track with installation for electron acceleration phase in 2017

- Run 2 and beyond:
 - Preparation of proposal for Run 2
 - Long-term prospects: Start to develop particle physics program that could be persued with an AWAKE-like beam.