

#### THE ALPHA COLLABORATION



Aarhus University, Denmark



University of British Columbia, Canada



University of California Berkeley, USA



University of Calgary, Canada







University of Manchester, UK



NRCN - Nuclear Res. Center Negev, Israel



Purdue University, West Lafavette, USA



Federal University of Rio de Janeiro, Brazil



Stockholm University, Sweden



Simon Fraser University, Canada`



TRIUMF, Canada



University of Wales Swansea, UK



**Cockcroft Institute, UK** 



York University, Canada



# ALPHA-g Why: a simple, fundamental question



universal gravitational attraction



We just don't know...

More specifically: is the acceleration of gravity exactly the same for these two cases?



#### **ALPHA Review: Trapping Antihydrogen**





#### **ALPHA-2**





### ALPHA-g: What is it?



#### ARTICLE

Received 14 Jan 2013 | Accepted 22 Mar 2013 | Published xx xxx 2013

DOI: 10.1038/ncomms2787

**OPEN** 

# Description and first application of a new technique to measure the gravitational mass of antihydrogen

```
C. Amole<sup>1</sup>, M.D. Ashkezari<sup>2</sup>, M. Baquero-Ruiz<sup>3</sup>, W. Bertsche<sup>4,5,6</sup>, E. Butler<sup>7,†</sup>, A. Capra<sup>1</sup>, C.L. Cesar<sup>8</sup>, M. Charlton<sup>4</sup>, S. Eriksson<sup>4</sup>, J. Fajans<sup>3,9</sup>, T. Friesen<sup>10</sup>, M.C. Fujiwara<sup>11</sup>, D.R. Gill<sup>11</sup>, A. Gutierrez<sup>12</sup>, J.S. Hangst<sup>13</sup>, W.N. Hardy<sup>12,14</sup>, M.E. Hayden<sup>2</sup>, C.A. Isaac<sup>4</sup>, S. Jonsell<sup>15</sup>, L. Kurchaninov<sup>11</sup>, A. Little<sup>3</sup>, N. Madsen<sup>4</sup>, J.T. K. McKenna<sup>16</sup>, S. Menary<sup>1</sup>, S.C. Napoli<sup>4</sup>, P. Nolan<sup>16</sup>, A. Olin<sup>11</sup>, P. Pusa<sup>16</sup>, C.Ø. Rasmussen<sup>13</sup>, F. Robicheaux<sup>17</sup>, E. Sarid<sup>18</sup>, D.M. Silveira<sup>8</sup>, C. So<sup>3</sup>, R.I. Thompson<sup>10</sup>, D.P. van der Werf<sup>4</sup>, J.S. Wurtele<sup>3,9</sup>, A.I. Zhmoginov<sup>3,9</sup>, A.E. Charman<sup>3</sup> & on behalf of the ALPHA Collaboration
```



#### **HOW:** the ALPHA-g concept



10 X HTS Magnet leads, Cryostat services

Top plasma diagnostic station

TPC
External vertical solenoid
Top Penning trap / Atom trap

Central analysis region

Bottom Penning trap / Atom trap

Beamline connection

- Because spectroscopy isn't hard enough...
- Trap some hbar; drop it, see where it goes
- Measure the sign of g-bar
- Measure the value of g-bar to 1% (4-5 years)
- Concept fully demonstrated in ALPHA –
  for horizontal geometry; some
  systematics already investigated
- Funding from Canada (CFI), DK (Carlsberg)



### **ALPHA-g Magnets and Penning Traps**



Design by ALPHA (C. So, J. Fajans); fabrication by BNL





#### **ALPHA-g Magnets and Penning Traps**









# **ALPHA-g Structure**



SPSC 18.10.2016

J.S. Hangst Aarhus University



#### **Beam Lines**

- 5 Modules, 6.5m in total length; design ALPHA/RAL
- Gate valves between each
- Contain
  - Beamline Magnets
  - Pumping stations
  - Diagnostics





#### Phase 1 Demonstration: the sign of g-bar (2017-2018)

- Use a trap similar to ALPHA-2, but vertically oriented
- Release atoms by lowering mirror coil currents in 10 s
- Simulations predict that 71% of antihydrogen atoms released come out the bottom, assuming 'normal' gravity
- We need of order 1000 hbar, released and detected to determine if gravity is normal (statistics only)

NB: ALPHA-2; September 22-30 2016: 1419 trapped hbar released and detected





#### More accurate measurement: Expansion and transfer to analysis region



- About 17% of atoms remain
- Temperature is now about 50 mK
- Copper analysis coils to reduce persistent current effects on field
- Cancel gravity with a gradient coil 18 G/m
- Same slow release experiment (10 s)
- Analysis of position distribution to determine g-bar
- Will use *in situ* magnetometry to measure fields
- We have conducted extensive simulations, including the effects of systematic errors
- Long-term measurement program after LS2
- Potential to use cold atoms of *matter* to 'calibrate' ALPHA-g
- Potential for laser cooling of trapped hbar to improve accuracy (pulsed Lyman-alpha light)

Model by J. Fajans, Berkeley



#### **ANNIHILATION DETECTOR**





- Position sensitive detection: a key feature for ALPHA's success
- Important ALPHA-g requirements
  - Large volume (> 2 m active length)
  - Efficient cosmic rejection
- Our solution
  - Radial drift TPC for tracking
  - Cosmic veto via SiPM based scintillator barrel



Scint. barrel surrounding TPC



## Radial TPC Prototype, Cosmic Test



- Prototype: 1/8 length, full radial size
- Cosmic test: anode RO partially instrumented
- Cathode RO firmware under development





Anode signals

Ch1 -Widtl 91.21ns

Reconstructed Cosmic Rays (no B field)



#### **COSMIC REJECTION STRATEGY**

- Cosmic rejection via TOF (in add. to TPC topology)
- Scint. readout by SiPM
- Prototype being tested



Scintillator bar prototype



For 500 ps resolution, 95% cosmic rejection expected while keeping ~90% of Hbars



#### Magnetometry

#### Three different applications

- •Sensors close to the TPC for field monitoring
- •Sensors in the liquid helium volume for monitoring *reproducibility* of mirror fields
- •Movable probe in vacuo for precision axial field mapping
- •Three separate NMR probes being developed at UBC/Simon Fraser
- Prototypes exist, being tested
- •We also use measurement of charged particle cyclotron frequencies to measure **B**



#### **Some costs:**

#### Main subsystems (estimates only):

| External solenoid            | <b>1.6 MCHF</b> |
|------------------------------|-----------------|
| Cryostat and vacuum systems  | <b>1.7 MCHF</b> |
| Internal (atom trap) magnets | <b>1.3 MCHF</b> |
| Detector and DAQ             | <b>2.4 MCHF</b> |
| Beamlines                    | <b>1.6 MCHF</b> |
| Magnetometry                 | <b>0.2 MCHF</b> |
| Penning traps and controls   | 0.4 MCHF        |
| Total:                       | <b>9.2 MCHF</b> |

Funding already approved: 13.2 MCHF



#### **ALPHA Zone**





#### **Scheduling Milestones**

- Begin expansion of existing ALPHA zone end of run 2016
- Arrival of beamline modules at CERN April 2017
- Relocation of ALPHA-2 positron source April-May 2017
- Arrival of cryostat, solenoid, rTPC at CERN September-October 2017
- First tests with particles by end of run 2017