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fast and precise calculation of 
trajectories through a magnetic field ���

���
(inspired by the LHCb context)
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what do we need ?



state in surface A 
(5 parameters) 

state in surface B 
+ jacobian matrix 

wanted precision:  
•  pattern recognition: better than the hit separation distance 
•  track fit: much better than the combination of measurement and multiple scattering errors 

useful trajectories: from primary vertices + short lived decays + KS/Λ decays if possible





guidelines:


•  the state on surface A lies in a small region of the 5D-space of track parameters


•  the wanted precision scales as 1/p in most cases


•  in general, one needs to consider a few predefined surfaces + short range extrapolations



standard method (used as reference): stepwise propagation using the Runge-Kutta algorithm


problem: access to a field map (possibly big size) and CPU time consumption 
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framework: forward spectrometer on a collider���
(similar to LHCb)



magnetic dipole 

y 

z 
(only the upper half is shown) 

A 

B 

upper edge of acceptance (slope 0.25) 

origin of  
trajectories 

field is mainly along y within the acceptance 
!  zx is the bending plane 
         max(By) on z axis ~ 1 T 
 total bending power along z axis ~ 4 T.m 

state in a z plane: 
x , y , tx , ty , q/p 
(tx= dx/dz, ty= dy/dz) 

in this study: extrapolation from the state in plane A to the state in plane B



field lines; density ~ intensity 

1 m 7 m 
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a polynomial expansion ���
of the deviation from the straight line ���

 

zB O 

δt 

deviation  Δx =  
Σ Cijk δtx

i δty
j (q/p)k 

 
similar expressions for 
 Δy, Δtx, Δty 
 
 
tabulate the coefficients  
as functions of x,y at zA 
 
+ apply global corrections in 
higher powers of q/p 
(independent of x, y, tx, ty) 
 
jacobian matrix easy to obtain 
from this parametrization 
 

zA 

including the magnetic deviation 
from 0 to zA as q/p F(zA) 
(F from a table) 
! |δtx| and  |δtx| are small 

straight line from O to 
starting point 

A 
B 

Δx 
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x 

y precomputation: 
expansion in tx ty q/p within a small solid 
angle (δtx, δty): 
coefficients Cijk at every point of the xy grid 

application: 
interpolation in x,y  to define Cijk at any point 

implementation on a planar surface
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orders of magnitude and working conditions 
typical conditions for  initial plane at z = 1 m: 
 σ(zvertex) ~ 5 cm  ! δt ~ 0.05×t 
impact parameter for KS products ~ 2.5  cm ! δt ~ 0.025 
 
domain used in initial plane to fit the coefficients 
•  p > pmin= 3 GeV/c (good chance to remain within the acceptance) 
•  |δt|max= 0.01 (0.03 for KS studies) 
•  |x| and |y| < 0.25 m 

computation: 
-    tabulation on 100×100 or 25×25 positions in plane A within ± 0.25 m  
-  20 values of q/p within (-1/pmin , 1/pmin) 
-  for each one, 20×20 values of δtx, δty in (-|δt|max , |δt|max) 
-    deviations from straight line using Runge-Kutta 
-  l.s. fit of the coefficients up to the wanted degree 
-  coefficient of global dependence on q/p: fit on the test sample 
  
test sample: 
-  flat distribution in q/p in (-1/pmin,1/pmin) 
-  distribution in pt : exp (-pt /1 GeV/c) 
-  vertex:  σz = 60 mm , σx = σy = 0.1 mm (15 mm for KS studies) 

Remark: Δx expanded in q/p  ! q/p expanded in Δx 


(prediction of momentum with initial segment + hit assignment)
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exploration of tables (here: C00k/pmin
k for extrapolated x, in mm) 

y 

expectations for a submillimetric precision: we need at least k up to 4


problematic region: large y



k = 1 k = 2 

k = 3 k = 4 
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first trial: degree 1 in δtx,δty, 3 in q/p ���
 100x100 tabulation in x,y (4-point interpolation)���

applied to the test sample 

error  on x error  on y 

error  on tx error  on ty 

for most tracks: 
error on position <~ 0.2 mm 
error on direction <~ 0.2 mrad 
 
may be good enough for some 
applications (especially in non-
bending  plane zy, where less 
precision is needed) 
 
but: the structure of the plots 
suggests a possible improvement 
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need for degree 4 in q/p ? 

error on x error on tx 

in green: x and y within (0.08, 0.12 m) 
clear quartic dependence suggests a  tabulated term in (q/p)4 
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with degree 4 in q/p (tabulated in x,y) 

quite sufficient in zy plane 
 
systematic dependence on q/p 
in zx plane suggests to add 
global corrections in (q/p)k 

(here with odd k because of 
the symmetry of the field) 
 

but: outliers (red rectangles) 
will remain far away. Where 
do they come from ? 

error on x error on y 

error on tx error on ty 
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 with global correction (degree 7 on q/p) for x,tx 

error on x 

blue lines: effect of 
multiple scattering in air 
(measurement error does 
not matter here) 
 
precision is excellent in 
the central region 
 
degradation for peripheral 
tracks is mainly due to 
outliers (see possible 
solutions in next slide) 
 
warnings: 
•  real field 
•  Pmin 

error on tx 
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where are the outliers ? 

x 

y 

 
well defined region in the initial plane 
(small fraction of the sample) 
as expected from the C00k plots 
 
possible solutions: 
•  apply standard Runge-Kutta 

extrapolation in this region 
•  define subregions with different 

expansions in q/p 
•  find a simple parametrization in 

x,y for the additional corrections 

(plot with more statistics) 
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errors due to interpolation ���
(here: trying to use a 25x25 xy table) 

zoom on the central part of 
the C001 plot (subtracting 
value at 0,0): 
simple interpolation from 4 
(x,y) points may produce a 
millimetric error 
can we try a second degree 
approximation in x,y ? 
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interpolation from xy table: ���
bilinear vs quadratic 

+ bilinear interpolation using 4 neighbouring points: 
amounts to define   a+bx+cy+dxy within the square 
(exact value on the vertices of the rectangle, but biased if 
terms in x2 and/or y2 are needed to match the shape)   

+ 

quadratic interpolation using 6 closest points to define  
a+bx+cy+dxy+ex2+fy2 
 

may be defined as a linear combination of the 6 values 
with  X = x/Δx , Y = y/Δy, the « matrix » of coefficients may 
be written in this configuration (X and Y in [-0.5,0]) as:  
 

x 

y 

Δx 
Δy 

more computations  but  better precision with reduced tables  
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using reduced tables (25x25 instead of 100x100)���
with 4-point interpolation 

x y 

tx ty 

~ millimetric error 
(as expected) 
 
no clear substructure 
 
systematic bias in zx 
plane (convexity effect): 
compensated in average 
by  global coefficients in 
q/p expansion, but 
dispersion remains 
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4-points/6-points results with reduced tables 
bilinear interpolation 

quadratic interpolation 
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error on x error on tx 
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including larger impact parameters (e.g. K0
S or Λ  decay products) 

with |δt|max= 0.01 , the coefficients of degree 2 in δtx , δty are small: 


no significant difference  when applied to the test sample


here we set  |δt|max= 0.03 and  σx = σy = 15 mm in the test sample


table: 25×25 with quadratic interpolation



degree 1 in δtx,δty  

degree 2 in δtx,δty  

error on x error on tx 

much better (and sufficient for applications)
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technical issues 
•  polynomial of high degree fitted on equidistant points: 
     the residuals are large on the ends (and diverge rapidly when going 
beyond); here the fit is done on points at (-0.9,-0.7…0.7,0.9)/pmin so it is 
actually constrained for p > pmin/0.9 
    the result is often « too good » at high p compared to low p. It may be 
possible to compensate this effect by setting more fitting points at large 1/p; 
it may be advantageous to chose pmin lower than the value wanted for 
applications 
 
•  linking extrapolations between successive planes:  
    if the trajectory is split in several steps (e.g. for a Kalman Filter), it may be 
easier to find separately solutions with lower degrees. However, the errors on 
x and tx are tightly correlated (similarly for y and ty), so there is a cumulative 
effect: even if each step fulfills the quality criteria, their combination may be 
unacceptable. 
 
•  accessing big tables vs making many operations: 
     to be discussed with experts  
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summary and comments 

•  within a restricted region of the 5D phase space of trajectories (tracks of 
physical interest), it is possible to obtain a fast and precise extrapolation 
between two predefined surfaces, through a polynomial expansion with 
tabulated coefficients. These tables provide also the jacobian matrix.






•  there are many tunable « handles » in the machinery (degrees of expansion, 

fitting ranges, region within the acceptance). It may be tailored for a specific 
purpose in a specific setup (done for LHCb, see talk by S. Stemmle)






•  there may be « bad » regions in the phase space: depending on the 

population, one can make a local refinement, or apply the standard Runge-
Kutta method. In any case, one can know a priori if a state is in a bad 
region 



•  a compromise has to be found between the size of the tables and the 
precision of the interpolation.



•  for large p, in a central region with nearly parallel field lines, convenient 
parametrizations with less coefficients may be used (see talk by S. Stemmle) 
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