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Radiation in Space
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Types of Radiation
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Galactic Cosmic Rays (GCR)

• 98% nuclear component

 87% protons, 12% helium, 1% heavier 
elements

• 2% electrons

• energies up to 1020 eV

• galactic sources: supernovae

• extragalactic sources for highest energies?

hardly shieldable

Solar Energetic Particles (SEP)

• protons, electrons, some nuclei

• energies up to several GeV

• travel along interplanetary magnetic field 
lines

• potentially harmful events quite rare

• strongly varying particle flux 

easily shieldable, except during EVA

Van Allen Radiation Belts

• Earth’s magnetic field 

• deflects low-energy particles
(GCR & SEP)

• traps particles

• energies up to 

• 7 MeV (electrons) 

• 2 GeV (protons)



The Multi-Purpose Active-Target Particle Telescope 
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energy range: > 25 MeV/n

energy resolution: < 2% (25 to 100 MeV)

(protons) < 10% (100 to 600 MeV)

angular resolution: ~ 3°

geometrical acceptance: 800 cm²sr

full solid-angle coverage

tracking calorimeter

particle ID for low-energy charged particles

total mass: 3 kg

dimensions: 12 x 12 x 12 cm³

power consumption:~30 W

fully parallel readout electronics 

time-over-threshold ASIC + FPGA architecture

high-rate capability 
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The Active Detection Unit
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Setup

• 900-channel active-target calorimeter

• scintillating fibers coupled to silicon 
photomultipliers (SiPM)

• stacked in 30 layers of 30 fibers each 

• 3D-tracking of charged particles

• SCSF-78 scintillating fibers (Kuraray)

• 3x3 mm² silicon photomultiplier from 
KETEK / Hamamatsu 



Event Reconstruction

Goal: reconstruct direction and particle 
characteristics (type, charge, energy) for 
individual events

Tracking

• 3D straight-line finding problem 

• precise track fitting

• Bayesian particle filter

• Markov-Chain Monte-Carlo

• fast algorithms:

• Hough transformation

• neural network
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Event Reconstruction

Goal: reconstruct direction and particle 
characteristics (type, charge, energy) for 
individual events

Bragg Curve Spectroscopy

• energy-loss profile along the particle’s 
track is unique for low-energy ions

• shape of profile depends on velocity, 
charge, and mass of the particle

• extrapolation of Bragg curve for 
through-going particles extends 
measurement range
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Challenges of the Event Reconstruction
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Response of the Fiber-SiPM Combination

• prototype tests at Paul-Scherrer Institute, Switzerland 
(2014, 2016)

• 16- and 128-channel prototypes 

• measuring the response to minimum-ionizing pions and 
stopping protons

• show tracking capabilities of the setup

• measure response of fibers for different incidence 
angles
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Response of the Fiber-SiPM Combination

Results

• good signal-to-noise separation for minimal-ionizing particles (MIP)

• good separation of protons and pions at equal momentum

• ~220 photoelectrons per MeV energy deposition
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Response of the Fiber-SiPM Combination

Results

• quantification of signal-saturation effects

• ionization (Birks’) quenching

• saturation of SiPMs 
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𝑁av = 𝑁pixel ∙ (1 − 𝑒
−
𝜀PDE∙𝑁γ
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325 MeV/c p beam

𝒌𝑩 = 𝟎. 𝟏𝟐𝟕 ± 𝟎. 𝟎𝟑𝟎 𝐦𝐦/𝐌𝐞𝐕

• precise reconstruction of the beam energy

• sub-MeV precision between 50 to 75 MeV

• limited by energy-straggling effects of the beam 
in front of the detector



Goal: find posterior-probability density function (PDF) for individual event: 𝑃 𝐸0, 𝑍, 𝐴,  𝜃 Data)

Bayesian-Filtering Technique

Likelihood Models

Event Reconstruction: Bayesian Analysis Methods
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• Integrating over all possible transitions from state 𝑥𝑘 to 𝑥𝑘+1,  we can connect the underlying 
states to each other

𝑃 𝑥𝑘 𝑧𝑘+1, … , 𝑧𝑁 =  𝑃 𝑥𝑘 𝑥𝑘+1 𝑃 𝑥𝑘+1 𝑧𝑘+1, … , 𝑧𝑁 d𝑥𝑘+1

• recursively calculate the PDF until state 𝑥𝑁 (after last measurement)

Bayesian-Filtering Technique
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• representation of PDF using 10k / 100k samples 
per step

1) draw random set of samples {𝑠𝑘+1
1 , … , 𝑠𝑘+1

𝑀 } from 

PDF 𝑃(𝑥𝑘+1)

2) apply system model for each sample (transition 
process)

• geometrical transport using CAD imported data

• multiple scattering

• single coulomb scattering

• energy loss including energy-loss fluctuations 

3) re-weight samples using the measurement model 

Bayesian-Filtering Technique: Implementation
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𝑤𝑘
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• test with simulated data
• 50 MeV protons

• isotropic flux

• including dead layers (PMMA, aluminum)

• flat prior probability distributions for free parameters

• 10 000 samples

• results
• initial energy resolution: 2.5% (1.2 MeV)

• initial direction resolution (3D): 3.1°

• no bias in energy or direction

• drawbacks
• computational performance (several CPU min per event)

• not down-scalable for online reconstruction (~ms)

• possible upgrades
• fast tracking algorithms for prior probability distributions

• only backward filtering

• implement geometric calculations on GPUs  

Particle Filter Performance
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Marginalized posterior deviation PDF of the initial energy

Pull distribution of the initial energy



Likelihood Methods

• evaluation of likelihood for different levels of precision

• maximum-likelihood fit (online) e.g. simulated annealing, gradient following,…

• full PDF extraction using Markov-Chain Monte-Carlo  

• implemented using the Bayesian Analysis Toolkit (https://github.com/bat/bat) 

Likelihood Formulation
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energy deposition in each fiber treated as nuisance 
parameters

probability to produce a measurement 𝜺𝒊
(𝒅)

in fiber 𝒊: 

measurement prediction: 𝑃𝑝𝑟𝑒𝑑 = 𝑆(∆𝐸𝑖|𝐸𝑖−1, 𝑙𝑖),

𝑆 ≡ Straggling function

measurement noise: 𝑃𝑛𝑜𝑖𝑠𝑒 = 𝑃 𝜀𝑖
𝑑
𝜀𝑖 , 𝜎𝑖

overall probability: 𝑃 = 𝑃𝑝𝑟𝑒𝑑 ∙ 𝑃𝑛𝑜𝑖𝑠𝑒



Likelihood Methods

Full Logarithmic Likelihood

Results

• results comparable to particle filter

• computational effort larger than for particle filter

• simulated annealing + gradient following fastest method but still Ơ(CPU min)
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Fast Methods for Online Reconstruction and Triggering

• reconstruct 2D tracks independently 
and combine afterwards to exploit 
lower dimensionality and enable 
parallel reconstruction

• based on image-reconstruction 
methods

Hough Transformation

• treating a fiber as a pixel (15x30 pixel 
image)

• normally used for structures that are 
larger than pixel size

• peak spreading

• loss of geometric features

oversampling the image: using smallest 
features of the geometry to fix the 
image size (360x360 pixel)

• one fiber is treated as 11x11 pixels

• increases precision
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Fast Methods for Online Reconstruction and Triggering

Recent Idea: Neural Networks

• supervised learning with simulation data

• offline training of network and implement trained network for online analysis in the detector’s 
DAQ

• simulation data from Geant4 contains a lot of features, since a lot of physics processes are 
implemented  no re-modelling of these processes necessary

Layout of the Neural Network

• joint network for parameter fitting (𝐸0,  𝜃) and classification (𝑍, 𝐴)

• multilayered, convolutional network

• optimal design under investigation

• learning based on greyscale image

we would be delighted to get some input & ideas during this conference
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Conclusion

• further use cases

• medical proton-beam characterization and 
monitoring 

• cosmic-ray physics on stratospheric research 
balloons

• anti-ion identification using the annihilation 
process in the active volume
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• a novel omnidirectional particle 
detector concept

• based on scintillating fibers 
coupled to SiPMs

• reconstruction of directionality and 
particle characteristics (particle 
type, energy, LET)

• implemented combined track 
fitting and particle reconstruction 
using Bayesian inference 
methods (offline analysis)

• particle filter method

• likelihood method

• fast algorithms for online analysis 
under investigation

• Hough transformation

• neural networks



Thank you for your attention!
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