Track vertex reconstruction with neural networks at the first level trigger of Belle II

Connecting the Dots / Intelligent Trackers 2017

Mar 6 - 9, 2017

Task for the first level trigger

- time dependent CP violation in BB
- typically $\approx 3 9$ tracks

max. trigger rate 30 kHz total latency 5 μs pipelined, FPGA

low track multiplicity: $e^+e^- \to \tau^+\tau^-$

- lepton flavor violation
- genuine 2 track trigger

Bhabha scattering

- for calibration
- needs to be prescaled
- Bhabha veto

- z-vertex $\neq 0$
- suppression requires3D tracking

Central Drift Chamber 14336 sense wires

56 layers

cells of sense wires and field wires

 $r_{
m drift} \propto t_{
m drift}$

Track trigger – track segment finder

Track trigger – track segment finder

Track trigger – track segment finder

Track trigger – 2D track finder

S. Neuhaus

Hough transform for circles

Track trigger – 3D reconstruction

4 z-coordinates from stereo hits and 2D tracks

- precise position: drift time
- event time determined parallel to track finding
- problems with fit: approximations, background

3D reconstruction

2 methods: neural network least squares fit

- $lue{}$ drift time separately ightarrow nonlinear corrections
- $lue{}$ crossing angle α : track curvature
- axial inputs: 2D track corrections

- 127 hidden nodes $y_i = \tanh \sum_i x_i w_{ii}$
- 2 output nodes $z_k = \tanh \sum_j y_j w_{jk}$ $z_k = \tanh \sum_j y_j w_{jk}$ weights w_{ij} , w_{jk} trained with backpropagation
- $lue{}$ drift time separately o nonlinear corrections
- crossing angle α : track curvature
- axial inputs: 2D track corrections

- missing axial hit: default inputs (0,0,0)
- missing stereo hit: expert network

resolution depends on

- missing hits
- track curvature
- background hits

 $B\overline{B} \to generic$

$$\tau^+\tau^- \to \text{generic}$$

 $\tau \to \mu \gamma$

- time dependent CP violation in BB
- typically $\approx 3 9$ tracks
- 1. track segments
- 2. 2D tracks: Hough
- 3. z-vertex: neural network

low track multiplicity: $e^+e^- \to \tau^+\tau^-$

- lepton flavor violation
- genuine 2 track trigger

Bhabha scattering

- for calibration
- needs to be prescaled
- Bhabha veto

- z-vertex $\neq 0$
- suppression requires3D tracking

- time dependent CP violation in BB
- typically $\approx 3-9$ tracks
- 1. track segments
- 2. 2D tracks: Hough
- 3. z-vertex: neural network

low track multiplicity: $e^+e^- \to \tau^+\tau^-$

- lepton flavor violation
- genuine 2 track trigger

Bhabha scattering

- for calibration
- needs to be prescaled
- Bhabha veto

- z-vertex $\neq 0$
- suppression requires3D tracking

- time dependent CP violation in BB
- typically $\approx 3-9$ tracks
- 1. track segments
- 2. 2D tracks: Hough
- 3. z-vertex: neural network

- lepton flavor violation
- genuine 2 track trigger

machine background

Bhabha scattering

- for calibration
- needs to be prescaled
- Bhabha veto

- z-vertex $\neq 0$
- suppression requires3D tracking

- time dependent CP violation in BB
- typically $\approx 3 9$ tracks
- 1. track segments
- 2. 2D tracks: Hough
- 3. z-vertex: neural network

- lepton flavor violation
- genuine 2 track trigger

machine background

Bhabha scattering

- for calibration
- needs to be prescaled
- Bhabha veto

- time dependent CP violation in BB
- typically $\approx 3 9$ tracks

Bhabha scattering

- 1. track segments
- 2. 2D tracks: Hough
- 3. z-vertex: neural network

- lepton flavor violation
- genuine 2 track trigger

🧀 Hardware is waiting for first tests. . .

Hardware team: S. Bähr, J. Becker

- neural networks implemented on FPGA
- logic tests with simulated input
- installation planned in spring 2017
- cosmic ray tests in summer 2017

Thank you for your attention!

Backup

Hit and network selection

hit in layer $1/3/5/7$				expert
\checkmark	\checkmark	\checkmark	\checkmark	#1
\checkmark	\checkmark	\checkmark		#2
\checkmark	\checkmark	—	\checkmark	#3
\checkmark	—	\checkmark	\checkmark	#4
_	\checkmark	\checkmark	\checkmark	#5

- 1. known left/right
- 2. short drift time

MC hits left/right	wrong
correct	unknown

background hits left/right

known unknown

layer 1

10°

 $-10^{\circ} - 20^{\circ}$