
Parallelized Kalman-Filter-Based
Reconstruction of Particle Tracks on

Many-Core Processors and GPUs
Connecting The Dots 2017: March 8, 2017

G. Cerati4, P. Elmer3, S. Krutelyov1, S. Lantz2, M. Lefebvre3,

M. Masciovecchio1, K. McDermott2, D. Riley2, M. Tadel1, P. Wittich2,

F. Würthwein1, A. Yagil1

1. University of California – San Diego

2. Cornell University

3. Princeton University

4. Fermilab
1

Outline

• Problematic & experimental setup

• Parallelizing on x86 processors: Sandy Bridge and Knights Corner
• Challenges
• Data structures
• Algorithmic approaches
• Results

• Parallelizing on GPUs
• Porting Strategy
• Data structures
• Track fitting: lessons learned
• Track building: increasing the algorithmic complexity
• First results

• Avoiding code duplication

• Conclusion & Perspectives

2

Why Parallelizing?

• By 2025, the instantaneous luminosity of the LHC
will increase by a factor of 2.5, transitioning to the
High Luminosity LHC

• Increase in detector occupancy leads to significant
strain on read-out, selection, and reconstruction

• Clock speed stopped scaling
• Number of transistors keeps doubling

every ~18 months
Multi-core architectures

• E.g. Xeon, MIC, GPUs
3

KF Track Reconstruction

• Tracking proceeds in three main
steps: seeding, building, and fitting

• In fitting, hit collection is known:
repeatedly apply the basic logic unit

• In building, hit collection is
unknown and requires branching to
explore many possible candidate
hits after propagation

4

Experimental Setting

Simplified setup

• Detector conditions
• 10 barrel pixel layers, evenly spaced
• Hit resolution

 σx,y = 100μm
 σz = 1.0mm

• Constant B-field of 3.8T
• No scattering/energy loss

• Track conditions
• Tracks generated with MC

simulation uniformly in η,φ
(azimuthal angle), and pT

• Seeding taken from tracks in
simulation

Realistic Setup

Options to add material effects, polygonal geometry:

More realistic setup partially built:

Barrel and Endcap (x86 only)

5

Selected Parallel Architectures

Xeon E5-
2620

Xeon Phi
7120P

Tesla K20m Tesla K40

Cores 6 x 2 61 13 12

Logical Cores 12 x 2 244 2496 CUDA
cores

2880

Max clock rate 2.5 GHz 1.333 GHz 706 MHz 745 MHz

GFLOPS (double) 120 1208 1170 1430

SIMD width 64 bytes 128 bytes Warp of 32 Warp of 32

Memory ~64-384 GB 16 GB 5 GB 12 GB

Memory B/W 42.6 GB/s 352 GB/s 208 GB/s 288 GB/s
6

Challenges to Parallel Processing

• Vectorization
– Perform the same operation at the same

time in lock-step across different data
– Challenge: branching in track building -

exploration of multiple track candidates per
seed

• Parallelization
– Perform different tasks at the same time on

different pieces of data
– Challenge: thread balancing – splitting the

workload evenly is difficult as track
occupancy in the detector not uniform on a
per event basis

• KF tracking cannot be ported in straightforward way to run in parallel

• Need to exploit two types of parallelism with parallel architectures

Vectorization
7

Matriplex
• Matrix operations of KF ideal for vectorized processing: however, requires

synchronization of operations

• Arrange data in such a way that it can loaded into the vector units of Xeon and Xeon Phi
with Matriplex
– Fill vector units with the same matrix element from different matrices: n matrices working in

synch on same operation

Matrix size NxN, vector unit size n

fa
st

 m
em

o
ry

 d
ir

ec
ti

o
n

vector
unit

8

Handling Multiple Track Candidates: First Approach

propagate candidate to layer

loop over hits in window

test χ2 < cut

go to next hit

sort temp vector, and
clean copies > N

fail

pass

candidates ready
for next layer

all candidates in layer
for all seeds processed

N.B. When processing tracks in
parallel with Matriplex, copy +
update forces other processes
to wait!
We need an other approach

copy candidate
update with hit

push into temp vector

χ2? χ2?

Fail

χ2?

PassPass
χ2?
Pass

9

Optimized handling of multiple candidates: “Clone Engine”

propagate candidate to layer

loop over hits in window

test χ2 < cut

go to next hit

add entry in bookkeep list

sort bookkeep list,
copy only the best N

fail

pass

candidates still
need update

all candidates in layer
for all seeds processed

update candidate with hit
from previous step

N.B. Clone Engine approach
should (and does) match
physics performance of
previous approach!

10

Track Building: Sandy Bridge and KNC
• Toy Monte Carlo experiment

• Simplified geometry & simulated events

• Similar trends in experiments with realistic geometry
& CMSSW events

• Scaling tests with 3 building algorithms

• Best Hit - less work, recovers fewer tracks (only one
hit saved per layer, for each seed)

• Standard & Clone Engine - combinatorial, penalized
by branching & copying

• Two platforms tested

• Sandy Bridge (SNB): 8-float vectors, 2x6 cores,
24 hyperthreads

• Knights Corner (KNC): 16-float vectors, 60+1 cores,
240 HW threads

• Vectorization - speedup is limited in all methods

• Faster by only 40-50% on both platforms

• Multithreading with Intel TBB - speedup is good

• Clone Engine gives best overall results

• With 24 SNB threads, CE speedup is ~13

• With 120 KNC threads, CE speedup is ~65

Sandy BridgeKNC

V
ec

to
ri

za
ti

o
n

M
u

lt
it

h
re

ad
in

g

11

GPU: Finding a Suitable Memory Representation

Block
16 x 36

threadIdx.x

th
read

Id
x.y

blockIdx.x

“Linear” ”Matriplex”
same strategy as the
one used for CPUs’
vector units.

Memory
Array

Threads

12

GPU Porting Strategy: An Incremental Approach

• Start with fitting:
• Share a large number of routines with building

• Simpler: less branching, indirections, ….

• Draw lessons along the way

• Gradually increase complexity
• ”Best Hit”: (at most) 1 candidate per seed

• New issue: Indirections

• “Combinatorial”: multiple candidate per seed
• New issue: Branching

13

Fitting: Optimizing Individual Events

GPU: K40

1. Pre-optimization
2. Better data access: use read only-cache (const __restrict__)
3. Merging kernels (reducing launch overhead)
4. Use registers over shared memory

69.95

36.457

12.268
8.5999

0

10

20

30

40

50

60

70

80

1 2 3 4

Overall Kernel Time (ms)

Overall Kernel time

10 events @ 20k tracks

For each event:

Reorganize tracks

Transfer tracks

For each layer:

Reorganize hits

Transfer hits

Compute

Transfer partial result
back

CPU

GPU Propagation & Update
Computations

Reorganizing data to Matriplex
Numerous indirections

14

Fitting: Filling up the GPU

0

18

36

54

72

90

108

126

144

162

180

1000 8000 10000 16000 32000 100000 200000

Ti
m

e
(m

s)

Matriplex Size

Time to fit 10 events @ 200k tracks

5 threads

10 threads

1 threads

GPU: K40

• Larger Matriplex size
• Faster kernels
• Longer reorganization

• Smaller Matriplex size
• “Faster” reorganization

• Concurrent events, different streams
• Individual kernel instances take longer
• Overall time shorter

• Compromise:
• Find Matriplex size so that time(reorg

+ transfer + kernel) is minimum

15

Track Building: GPU Best Hit

• Parallelization: as in Track Fitting
• Parallelization: 1 GPU thread per candidate

• Reorganizing on the CPU is not an option for building
• Frequent reorganizations  very small kernels
• Numerous reorganizations no more overlapping possible

• Data Structures
• Matching CPU and GPU data structures to ease data transfers

• Later reorganized as Matriplexes on the GPU
• Static containers directly used on the GPU: Hits, Tracks, …
• Object composition forces additional trick for classes at the top of the wrapping hierarchy

• Keep arrays of sub-objects both on the host and on the device to be able to fill copy
sub-objects from the CPU and access them from the GPU.

 Data transfer overhead from transferring multiple smaller objects

16

Track Building: Tuning Parameters

• Usual problem, find tmin that satisfies:
• tmin = min f(a, b, c, d)

• (a) Number of Eta bins (*)

• (b) Threads per block

• (c) Matriplex width

• (d) Number of tracks per event

• ”Standard” insight
• The GPU should be filled with enough

threads

• Even more so with newer GPUs

Computing multiple events concurrently is
mandatory

0

0.1

0.2

0.3

0.4

0.5

21 17 13 9 5 1

Number of Eta bins

K20 P100

0.01

0.1

1

10

100 Matriplex Size

K20 P100
10 events @ 200k tracks

(*) Eta bins: Hits are binned by η to reduced the amount of hits that should be tried for a track
.

10 events @ 20k tracks

17

Building with Multiple Candidates: “GPU Clone Engine”

propagate candidate to layer

loop over hits in window

test χ2 < cut

go to next hit

add entry in sorted
bookkeep list

Merged sorted bookkeep lists,
copy only the best N

fail

pass

candidates still
need update

all candidates in layer
for all seeds processed

update candidate with hit
from previous step

N.B. Clone Engine approach
should (and does) match
physics performance of
previous approach!

18

Building with Multiple Candidates

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

itrack

iseed

icand

ithread

BlockDim.x

M
ax

C
an

d
sP

er
Se

ed

MaxCandsPerSeed = 4
BlockDim.x = 8

G
lo

b
al

 M
em

.
O

ld
 C

an
d

id
at

es

Sh
ar

e
M

e
m

.
N

ew
 C

an
d

id
at

es
*

Fast-dim

• A Clone-Engine approach is required:
• Moving tracks around global memory is guaranteed to

be a performance killer

• Parallelization: 1 thread per candidate
• Other strategies should be investigated (e.g. 1 thread

per seed)
19

*Potential next-layer candidates, after adding an acceptable hit from the current layer

Sifting a Seed's New Candidates in Shared Memory

-1 -1 -1

-1 -1 -1

-1 -1 -1

7 5 -1

3 2 -1

1 4 2

7 2 2

3 4 -1

1 5 -1

3 2 -1

2 4 -1

1 5 2

2 2 2

2 4 -1

1 5 -1

1 2 2

2 4 -1

2 5 -1

Set to sentinel value

Max-heap pushpop
with new cands

Heap sort Cand 0

Heap-sort cand !=0

Max-heap pushpop
from cand 1 in 0

Max-heap pushpop
from cand 2 in 0

MaxCandsPerSeed = 3
BlockDim.x = 8

Notes: Possible optimization using a binary tree approach to sift
The integer in each box represents the chi-squared that results from adding a given hit

20

Track Building: Initial Performance

0.4475

0.037

0.14

0

0.1

0.2

0.3

0.4

0.5

10 events @ 20k tracks

Ti
m

e(
s)

Track Building: Best Hit

SNB 1 thr, AVX SNB 24 thr, AVX K40 + transfers

6.08

0.43

4.97

0

1

2

3

4

5

6

7

10 events @ 20k tracks

Ti
m

e(
s)

Track Building: Clone Engine

SNB 1 thr, AVX SNB 24 thr, AVX K40 + transfers

• 20K tracks per event is not enough to give good
performance

• Need to increase the number of events
concurrently fed to the GPU by using different
streams

• Too many synchronizations
• Sorting’s branch predictions
• Idling threads when number of candidates per

seed is not maximum
• Transfer account for 46% of the time

21

Avoiding Code Duplication

• Keeping two code bases in sync is complicated

• Ability to directly address the architecture
• At least for this kind of study

• Core routines are very similar in C++ and CUDA

Template interface
• Overloaded operators ([], (,,,))

• Allow for the same memory accesses

Separation between ”logic” and work decomposition
• C++ ”for” loops vs. CUDA “if (< guard)”

22

Track Building on GPU:
Improvements and Next Steps
• Stream concurrent events to the GPU

• Already in place but,
• Event set-up needs to be moved outside the parallel loop

• Alternative strategies for the clone-engine approach
• One thread per seed
• Adaptive strategy depending on the number of candidates per seed

• Move onto newer Pascal GPUs
• Profiling with Instruction Level GPUs (>= Maxwell)
• Synchronize only relevant threads, not the full block (>= Pascal)

• __syncthreads -> sync(…);

23

Conclusion & Perspectives

• Track fitting and track building show good performance for both
vectorization and parallelization on x86 processors (SNB & KNC)

• GPU performances are still behind, particularly in term of $/event
• Newer GPUs should alleviate some of the issues

• Better filling through concurrent streams of events seems crucial

• Lessons learned on one architecture are often valuable to algorithm
development on the other one

24

Backup

25

Track Building: Physics Performance – Efficiency

26

Track Building: Physics Performance – Fake Rate

27

Track Building: Physics Performance
Number of Hits per Track

28

Pascal Managed Memory

STL?

29

Mapping: Threads, Tracks, CandList

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

itrack

iseed

icand

ithread

BlockDim.x

M
ax

C
an

d
sP

er
Se

ed

MaxCandsPerSeed = 3
BlockDim.x = 8

G
lo

b
al

 M
em

.
O

ld
 C

an
d

id
at

es

Sh
ar

e
M

e
m

.
N

ew
 C

an
d

id
at

es
*

Fast-dim

30

Clone Engine: Different Strategy

• One thread per seed
• Less idling threads due to

low numbers of
candidates per seed

• Breaks the Matriplex
aligned memory accesses
• Unless 32 candidates per

seed

• Or significant padding

• Less threads per events

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2

itrack

iseed

icand

ithread

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2

itrack

iseed

icand

ithread

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2

itrack

iseed

icand

ithread

31

Avoiding Code Duplication
…while keeping the C++ code clean
• STL is still not available in CUDA code

• C-arrays (T*) are the main container in CUDA code (even if
encapsulated)

• E.g. std::vector are hard to adapt
• Resize(), push_back(),…

Allocate larger arrays

Many cudaMemcpys to transfer complex, irregular data structure
• E.g. vector<vector<T>>

32

Realistic Geometry with CMSSW events (x86 only)

• Single muon gun

• t-tbar + pileup, where the mean pileup per event is 35

• Phase0 geometry

• Efficiency and nHits/track for CMS events
• comparable to CMS for this particular set of seeds/tracks

33

