

Performance of the ATLAS Tracking and Vertexing in the LHC Run-2 and Beyond

Introduction

◆In this talk:

- Hardware overview with details on Insertable b-layer and its impact for tracking
- Software technicalities: The ATLAS approach, CPU reduction, plans for Run3
- Material measurements
- Time depending alignment
- Tracking performance: standard, inside Jets, heavy ions and large radius tracking.
- Vertex performance

◆ATLAS topics discussed in upcoming/passed talks:

- ◆ Lossless data compression for the HL-LHC silicon pixel detector readout by Stamatios Piulios (06/03/17, 18:15)
- ◆ The design and simulated performance of a fast Level 1 track trigger for the ATLAS High LuminosityUpgrade by Mikael Martensson (07/03/2017, 09:00)
- ◆ *Improved AM chip pattern recognition with optimized ternary bit usage* by Stefan Schmidt (07/03/2017, 11:30)
- ◆ Optimal use of charge information for HL-LHC pixel readout by Ben Nachman
- ◆ Expected Performance of ATLAS Inner Tracking at the High-Luminosity LHC by Nora Pettersson (08/03/17, 9:30)
- ◆ Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment by Zihao Jiang (09/03/2017, 10:30)

The Inner Detector (ID)

♦Reconstruction of charged particles with $|\eta|$ < 2.5:

- **♦** input for many physics objects:
 - ◆ Electrons and muons
 - → Jet substructure and jets mass resolution
 - → B-tagging
 - ◆ Mitigate pileup effects by separating Primary Vertexes
- ♦ New Insertable-B layer (IBL)
 - ♦ 6.02 M channels
 - \rightarrow Resolution: 8x40 μ m (pixel size 50x250 μ m)
- **♦** Silicon Pixel detector (Pixel)
 - → ~80M channels
 - ightharpoonup Resolution: $10x115 \mu m$ (pixel size $50x400 \mu m$)
- **♦** Semiconductor tracker (SCT)
 - ♦ Silicon microstrips
 - ♦ 6M channels
 - ♦ Resolution: 17x580 μm
- **♦** Transition Radiation Tracker (TRT)
 - ◆ 2mm radius drift tubes + Transition radiation
 - → ~350k channels
 - ♦ Resolution ~130 μm
- ♦ 2T axial B-field

ID Upgrades for Run 2

New insertable B-layer (IBL)

- ◆ Inner most additional pixel layer (4th) at radius 33 mm from the beam line
- ◆ New beampipe
- ◆ Preserve tracking with increased luminosity
- ◆ Improves vertexing, impact parameter resolution and b-tagging
- 14 staves overlapping in the r ϕ plane of length 332 mm with 130nm CMOS modules with 2 technologies:
 - → 12 planar and 2 x 4 3D modules

Done during Long Shutdown (2013-2015)

Pixel:

♦ New services, new optical links, 3% modules recovered.

TRT:

 Gas leaks for the end-caps repaired, new firmware to operate at

100kHz, validity gate, PID optimised

New Diamond Beam monitors (DBM) installed in the Pixel volume

♦Hit preparation:

- ◆ Pixel and SCT clustering: finding connected cells (pixels/strips) on module via a connected component analysis
- TRT Drift Circle creation

♦Space point formation:

◆Using the local cluster positions and sensor surface form 3D/2D space points

Ctdwit 2017

♦Space point seeding:

- ◆Build triplets of seeds and evaluate their compatibility (To 4th layer or to Beam Spot)
- ◆Road building for combinatorial Kalman filter

- **◆Track finding and ambiguity solving**
 - ◆Resolve detector elements in a given road and start track candidate search based on space point seeds
 - ◆Precise least square fit with full geometry of the track candidates
 - ◆Tracks are ranked by an ambiguity solving

strip detector pixel detector particle origin

♦Ambiguity solving

- ◆Favour tracks with good fit quality and large number of hits
- ◆Penalise tracks with holes or shared hits
- **◆**Tracks with highest score survive

Track parameters:

$$t = (d_0, z_0, \eta, \phi, q/p)$$

Ctdwit 2017

- **♦**Extend to the TRT
 - ◆Progressive finder in a given road
 - ◆Refit extended track
 - ◆Use ambiguity to keep new or old track

- ◆Up to here this is the inside to outside tracking
- ◆ATLAS also performs outside to inside tracking:
 - ✦Hough transform in the TRT for pattern recognition with remaining hits
 - ◆Back-extrapolation to SCT and Pixel, only using unused hits
 - ◆Full global Chi2 fit
 - ◆This is only performed in regions of interest: EM Calorimeter clusters (conversions)

Some more details about SW

During Long Shut Down 1:

- ◆ Mayor campaign to clean and **SPEED UP** the code: 4*x*
- ◆ Use of EIGEN + code optimisation
- Simplified data model
- Pattern recognition fine tuned
- Tracking in dense environments

Upcoming Challenge:

→ ID tracking should be fully thread safe for LHC run 3

A-Common-Tracking-SW (ACTS):

- Ambitious plan to externalise tracking code from ATLAS, so can be used by other groups/experiments as FCC: https://gitlab.cern.ch/acts/a-common-tracking-sw/
- Tracking geometry description which can be constructed from TGeo, DD4Hep or gdml input
- Simple and efficient event data model
- Performant and highly flexible algorithms for track propagation and fitting
- Basic seed finding algorithms
- → Plenty of details in a dedicated talk: 09/03/17, 12:00

♦Q1/2017:

Now release 0.4 coming, with:

- TrackingGeometry building for ID like detectors
- Material mapping from Geant4 for the TrackingGeometry
- Extrapolation, Geometry digitization, Fitting (Kalman filter)

Q2/2017:

- Try to release the first release 1.0-beta around summer with the full demonstrator without pattern recognition
- Thread-friendly

◆Q3/2017 - Q4/2017

- First wrapping with ATLAS: make a fork of ATLAS and exchange everything after pattern recognition with ACTS
- In parallel, port the pattern recognition, but that will not be there before the end of the year

Measuring the ID material

Beam pipe material known to 1% precision

- ◆ SCT extension Efficiency:
 Material between SCT and Pixel
- ◆Photon conversions
 Sensitive to radiation lengths
- ◆Hadronic interactions
 Sensitive to interaction lengths
 Very good position resolution

Updated Geometry for Run2:

Initial underestimation of IBL material

Hadronic Interaction Radius [mm]

Hadronic Interactions

9th March 2017

ATLAS Preliminary

ATL-PHYS-PUB-2015-050

A STOLLAND OF THE STOLLAND OF

◆ SCT extens Material be

♦Photon convSensitive to

◆Hadronic in Sensitive to Very good p

Updated Geo

Initial unde

Inner Detector Alignment

Track based algorithm

◆Using track Chi2 to estimate alignment parameters (t) with r (residual) and covariance matrix (V):

$$\chi^2 = \sum_{tracks} r^T(t, a) V^{-1} r(t, a)$$

Detector stable on long time scales (no if power cut, magnet ramp, cooling issues..)

Run-by-run and with-in run alignment:

- ♦IBL mechanical instability with temperature
- ◆Vertical movement of pixel within fill
- Alignment determine movement of detector volumes / staves automatically:
 - ◆Every 20 minutes during first hour of the fill
 - ◆Every 100 minutes after
 - → Alignment updated within 24h after the run is over

IDTR-2016-005

Inner detector in pp

- **♦**MC and data for IBL, Pixel, SCT and TRT in great agreement
- **♦**After alignment, very good detector resolution, very close to MC expectations

Tracking in Dense Environments

- ❖ In busy environment, large probability to have 2 or more very close charged particles
- **Neural network** to identify clusters *shared* by more than 1 particle, split them and estimate the position and error of each one:
 - ◆ Uses cluster charge, shape, correlation with previous layer and incidence angle
 - \bullet **Improves**: *b-tagging*, τ reconstruction, jet -mass reconstruction, etc..
- → Performance validated in data by independent 2 methods:
 - ◆ Geometrical extrapolation and using the overlap region in phi
 - \rightarrow Energy loss (dE/dx) in the pixel:

Tracking in Dense Environments (TIDE)

Tracking inside jets is fundamental for:

- ♦ b-tagging
- $\star \tau$ reconstruction
- → High precision jet mass measurement (used for analysis as BSM searches)

Large efficiency increase with ATLAS tracking in dense environments (TIDE

TIDE is used as default for whole Run 2 and future:

ATL-PHYS-PUB-2015-006/

Impact parameter resolution

 d_0 and z_0 resolution improved up to ~40%:

- ◆ New IBL
- ◆ Material reduction in the pixel boundaries

Impact parameter sensitive to material description at low pT

Improved discrimination between primary and secondaries: Important for MB analyses.

♦The impact parameter resolution has been unioused to remove the contribution iron the vertex resolution

Tracking efficiency in pp

Very good tracking efficiency:

- * at large instantaneous luminosity: increase of fakes mitigated by tighter track selection
- Track efficiency measure in MC and systematics applied to fit to data
- Large uncertainty is material budget

Tracking performance in Heavy Ions

- Insight of performance at very large occupancy
- ◆ Data overlay samples: simulated hardscattering pp collisions embedded into real Pb+Pb events.
- ★ Efficiency defined as a fraction of generated primary particles that are matched to reconstructed tracks with respect to all generated primary particles.

Large radius tracking

- ◆ The large radius tracking is performed as a second pass after the standard tracking using unused hits to improve the signal track reconstruction efficiency at large impact radii.
- ♦ The reconstructed tracks are required to fulfil the following quality criteria: pT > 1 GeV, |η| < 2.5, hit quality requirements, |d0| < 300 mm, |z0| < 1,500 mm. The efficiency is calculated for truth particles fulfilling the same η and pT requirements

Vertex Performance

The standard vertex fitter used in ATLAS is a kalman filter with an iterative annealing procedure

Due to the large number of tracks, it is very optimised to keep CPU time low

Up to 140 tracks per vertex:

Vertex efficiency vs mu

Relationship between the number of reconstructed vertices and the average number of interactions per crossing

- Beam induced background extracted.
- Vertexes are merged when they are closer than vertex resolution causing a non-linearity in mu

Vertex resolution

Estimated by Data/MC studies (minimum bias events), differences due to:

- ♦ Description of the sub-detector hit errors
- → Multiple scattering, ionization energy losses
- → Residual misalignment

- ◆ ATLAS Inner Tracking has an outstanding performance even operating over its design specifications
 - ◆ ID detectors did a huge work to operate at very high rates
- ◆ IBL is operating smoothly, giving an improved performance with respect to Run 1
- ◆ Time dependent alignment allows to correct for detector changes within runs
- ◆ Tracking in dense environments improved the reconstruction at large mu and inside jets
- ◆ Ready to collect data for the remaining part of Run 2 and algorithms improvements expected for Run 3
- ◆ Preparing our tracking for Run 3: Multithread safe and new ideas WELCOME!

25

The ATLAS Experiment

◆LHC General purpose experiment:

- Inner tracking
- Electromagnetic and hadronic calorimeter

- **♦**Wide range of physics:
 - ◆Proton-proton collisions at 0.9, 7, 13 and hopefully 14 TeV
 - ◆Lead-Lead and proton lead 44m

The Insertable b-layer (IBL)

Imaging inspired vertexing

- Alternative vertex finding algorithm inspired in medical imaging
 - ◆ 3D binned histogram with linearised helical trajectories. Histogram content in each traversed bin is incremented by the path length of the track in that bin
 - The track image is transformed into frequency space using the FFTW3
 - ◆ A filter is multiplied with the frequency space histogram. The filtered frequency space image is then back transformed to position space,
 - ◆ The resulting image is then passed to a separate clustering
- ◆ Linear in CPU with luminosity. while combinatorial vertexing is quadratic.

ATL-PHYS-PUB-2015-008

Vertex resolution vs mu

Overall vertex fitter is very insensitive to the presence of outlying tracks— this helps the performance of the hard-scatter primary vertex against infiltration from pile up tracks.

The efficiency for Hard Scatter vertex reconstruction is near 100% for all pile-up studied. At $\mu = 40$, 8% of Zmumu primary vertices have Highest level of pile-up contamination → transverse resolution worsened by ~20%, longitudinal resolution worsened by factor of 5. (Transverse resolution is aided by beam spot constraint)

Contributions:

- A) Clean
- B) Low pile-up contamination
- C) High pile-up contamination
- ⊕ (A)+(B)

Overall efficiency:

+ (A)+(B)+(C)

