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Is it possible to reconstruct all tracks 
in real time? → every 25ns ?

O(10000) dots

ATLAS @ High Lumi-LHC

and to filter out 
the interesting events?
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Overview
Part I
● motivation for track triggers
● track trigger methodologies
● requirements for future track triggers (upgraded LHC and beyond (FCC))

Part II 
● monolithic CMOS pixel detector technologies

Part III
● track trigger designs based on monolithic pixel detectors
● simulation results

Conclusion
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Motivation for Track Triggers
@ hadron colliders with high pileup

● Calorimeter triggers: → energy distribution and rough particle ID 
● Muon triggers: → muon identification and momentum 
● Track triggers: → momentum, origin and separation

                                             of charged particles

z

event pileup:
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Motivation for Track Triggers
@ hadron colliders with high pileup

z

highest momentum tracks

● Mutijet-Track Trigger:
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Motivation for Track Triggers
@ hadron colliders with high pileup

z

→ Identification of multi-jet topologies

● Mutijet-Track Trigger:
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Motivation for Track Triggers
@ hadron colliders with high pileup

● Isolated high-momentum track trigger:

z

highest momentum track

→ signature for high momentum e, μ, τ leptons 
(electroweak processes)
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Motivation for Track Triggers
@ hadron colliders with high pileup

track triggers can provide useful information about:
● particle momentum 
● particle direction
● origin (primary vertex, secondary vertex)
● particle counting
● particle isolation (→ lepton identification)
● particle identification (in combination with other triggers)

→ complementary to calo/muon triggers
→ improve selectivity of trigger in general
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Track Trigger Methodologies I
● Track counting:

z

x

y

requires one tracking layer

→ useless information for high pileup events (colliders)



A.Schöning, Heidelberg University 13 Connecting the Dots, Orsay, March 2017

Track Trigger Methodologies II
● “Vector tracking”:

z

x

y

requires two tracking layers

→ z-vertex reconstruction only possible with two pixel layers
→ momentum reconstruction only by applying beam-line constraint
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Track Trigger Methodologies III
● 3D tracking:

z

x

y

requires at least three tracking layers

→ full track parameter determination with three pixel layers
    (if multiple scattering is negligible)

curvature!
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from https://www.enterprisedb.com/blog/3-ways-reduce-it-complexity-digital-transformation

The Track Trigger Enemies
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Enemy I: Track Linking and  
Hit Confusion Problem

z

x

y

?

??

→ hit ambiguities are best resolved in 3D (pixel)
→ pixel information simplifies track linking and improves purity!
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~R-2

100 Mbit/s

Enemy II: Hit Rates and Limited
Readout Bandwidth

● rates in ATLAS detector 
for HL-LHC

● readout of all hits for every
bunch crossing only feasible
for large radii

➔ full tracking requires track 
trigger layers at large radii 

→  large sensitive areas



A.Schöning, Heidelberg University 18 Connecting the Dots, Orsay, March 2017

Enemy III: Complexity
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Enemy III: Complexity

For fast track triggers there is just no time performing complex operations:
● local processing preferred over global processing
● linearisations instead of non-linear problem solving 
● use simple (stacked) geometries which reduce the hit confusion problem

ambiguitiesno ambiguities

Enemy III: Complexity

→ tracking detector design issue!
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Tracks with momenta of p< O(10 GeV) are dominated by multiple
scattering (MS) at LHC 
● adds additional complexity for track reconstruction
● increases significantly phase space of allowed patterns 
● relevant for all methods of track reconstruction:

➢ Kalman fitler
➢ lookup techniques
➢ associated memories (AM)
➢ Hough trafo, conformal mapping

Enemy IV: Tracking Material

Material also increases the probability for
● electromagnetic interactions
● nuclear interactions

➔ secondary & tertiary particles

PS ∝
1

p(N−1) (∏i=1

N−1 xi

X 0, i
)
1
2 ∏i=0

N ΔR i

Δ zi

0

N

ΔR i

Δ zi
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The Seven Requirements for 
Future Track Triggers

● highly granular pixel 
➔ 3D tracking and vertexing
➔ reducing ambiguities

● little material 
➔ reduces MS, secondary interactions 

and thus confusion problem
● good timing 

➔ resolve bunch crossing
● high efficiency @ low noise 

➔ fewer tracking layers
➔ reducing ambiguities

● fast readout capabilities 
➔ high track rates

● radiation hardness 
➔ high track rates

● affordable 
➔ large sensitive areas

50 µm

Mupix7
HV-CMOS AMS 180 nm 
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Part II

➔ monolithic CMOS pixel detector technologies
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Pixel Readout Concepts

+
-

standard hybrid
architecture

bump
bonds

diode amplifier discriminator RO buffer serializer

sensor RO-chip

sensor

MCC

FE-chip FE-chip

bump
bonds
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Pixel Readout Concepts II

+
-

standard hybrid
architecture

bump
bonds

diode amplifier discriminator RO buffer serializer

sensor RO-chip

+
-

monolithic 
design with
trigger output

track trigger (40 MHz)

diode amplifier discriminator RO bufferserializer

50 µm

Mupix7
HV-CMOS AMS 180 nm 
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pixel detector pixel size (µm2 ) thickness/X
0

monolithic

ATLAS IBL 50 x 250 1.9% no

CMS (current) 100 x 150 ~2.0% no

CMS (upgrade) 25 x 100 or 
50 x 50

~1.1% no

ALICE (current) 50 x 425 ~1.1% no

ALICE (upgrade) 29 x 27 ~0.3% yes

STAR 21 x 21 ~0.4% yes

Belle II 50 x 75 ~0.2% no

Mu3e 80 x 80 ~0.1% yes

Pixel Detector Comparison

 monolithic concept →  thin tracking layers with high pixel granularity
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ALICE Upgrade: ALPIDE Project

3 inner layers

2 middle layers 2 outer layers

~ 10 m2 active surface

● TowerJazz 180nm with high resistivity 
epitaxial layer

● small N-well diode
● deep p-weel shields NWELL of PMOS 

transistors
● pixel size 27 x 29 mum
● charge collection mainly by diffusion

Pixel:

→ slow timing; not very radiation hard
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Mupix for Mu3e (Search for µ → eee) 

I.Peric et al., NIM A 582 (2007) 876

transistor logic embedded in N-well
(“smart diode array”)

● active sensor 
  → hit finding + digitisation + readout
● HV-CMOS: 60-85 V (Austria Micro Systems)

● charge collection by drift → fast timing
● “low cost” process 
● sensor thickness 50 μm
● zero suppressed continuous readout 
  of all hits
● fast serial links (1.5 Gbit/s)  integrated

High Voltage-Monolithic Active Pixel Sensor
(HV-MAPS)Central Mupix pixel tracker

2 inner vertex layers
2 outer pixel layers

CMOS reticles
20 x 20 mm2

→ talks by Dorothea and Alex
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Mupix7 Prototype Test Results 
efficiency and noise:

efficiency after irradiating 5e15 neutrons/cm2:

time resolution of hits:

time difference wrt scintillator time (ns)

E
ve

nt
s
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ATLAS CMOS Demonstrator Project 

CMOS technologies considered for (non-)monolithic CMOS designs:
● AMS (Austria Microsystems) 180 nm  HV-CMOS (Depleted MAPS) 

charge collection mainly by drift

● Lfoundry 150nm with high resistivity substrate (Depleted MAPS)

charge collection mainly by drift

● TowerJazz 150nm with epitaxial layer (low fill factor) 

charge collection mainly by diffusion

● TSMC 90 nm with epitaxial layer (low fill factor) 

charge collection mainly by diffusion 
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Recent Monolithic Pixel Chip Submission

Mupix8 for Mu3e (+LHC)
● 80 x 80 µm2 pixel
● comparator in periphery
➢ track trigger outputs

dedicated test structures
● 40 x 130 µm2 pixel
● comparator in pixel
➢ track trigger outputs

AMS aH18 process
● HV-CMOS 180 nm
● being diced right now

23mm

main designer I.Peric (KIT)
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The Seven Requirements for 
Future Track Triggers

● highly granular pixel 
➔ 3D tracking and vertexing
➔ reducing ambiguities

● little material 
➔ reduces MS and confusion problem

● good timing 
➔ resolve bunch crossing

● high efficiency @ low noise 
➔ fewer tracking layers
➔ reducing ambiguities

● fast readout capabilities 
➔ high track rates

● radiation hardness 
➔ high track rates

● affordable 
➔ large sensitive areas

50 µm

Mupix7
HV-CMOS AMS 180 nm 
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Part III

➔ track trigger designs based on monolithic pixel detectors
➔ simulation results
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Simple Track Trigger Design
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Studied Track Trigger Design (ATLAS-”inspired”)

beamline dca

x

y

p
T  

with beamline 
constraint

p
T
(triplet)

z

r

beamline

z
0

3 monolithic 
pixel trigger layers

transverse view: longitudinal view:

strip layers

pixel layers

only local hit 
processing is 
required!
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Optimal Distance between Trigger Layers?

Momentum measurement only possible if:

d = radial distance 
      between layers

d
d

d2
> 8b2

χcut
2

with b = 45mm
Tesla

B
√x /X0

(multiple scattering limit for tracking  → arXiv:1606.04990)

for χcut
2 =15 , B=2 Tesla ,

x
X 0

=0.01

follows: d >6 mm

d

#ambiguities

fo
rb

id
de

n

momentum
uncertainty

6 mm 20 mm

compromise!
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Simulation Study

Simulation Setup 
● fast simulation including all electromagnetic IA (brems, photon conversions)
● upgraded LHC scenario: proton-proton collision with 200 pileup events
● monolithic triplet layers with 40 x 40 μm2 pixel size at radius = 100 cm with d=2cm

● Material per tracking layer 1.5% X
0
 

● cylindrical geometry

Monte Carlo Samples
● Pythia 8 for MinBias events for purity studies
● Z' → ttbar with m(Z`)=3 TeV for efficiency studies
● (HH → bbar tau tau)  

→ first preliminary results
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Simulated Z
0
 Resolution

σ(z
0
) ~ 2.5 mm

z

→ good separation of pileup events possible!

event vertex can be reconstruction with a resolution
of a few mm in z-direction (depends on tracker material)
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Single track efficiency for different p
T
 thresholds

Track reconstruction efficiency ~ 100% *
Track purity is close to 100% (not shown)

>2 >5 >10 >15 >20

* assuming 100% 
single hit efficiency

p
T
(gen) (GeV/c)

migration losses

Track Finding Efficiency
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Conclusion

Monolithic pixel sensors are ideal for realizing track triggers

Prototypes of depleted MAPS have been successfully qualified
for HL-LHC within the ATLAS CMOS demonstrator project;
new test chips are being produced

Reconstruction of all tracks for PU=200 @ 40 MHz seems 
possible with high efficiency and purity using a special 
tracker design (stacked layers)

Such a track trigger could trigger on isolated leptons,
multi-jet topologies, etc.

Studies are ongoing ...  
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Outlook
Study concrete designs using full GEANT simulation:

x

y

40mm

monolithic CMOS sensors

aggregator

example layout:

Track
Trigger

&
DAQ

top view of one ladder:

side view
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Backup
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Typical LHC Experiment
● O(10000) charged tracks at HL-LHC
● material  budget ~ 2-3% / layer
● 10-12 layers per experiment for R≤1m

Uncertainties:
● hit resolution  ~ 15 µm → 

● scattering: σΘ ∝
1
p

√ X / X 0 → p
crit

 = 15 GeV/c

σΘ≈ 0.15 mrad

p10 GeV/cp10 GeV/c

● hit uncertainty
dominates

● ~1% of particles

● multiple scattering
uncertainty dominates

● ~99% of particles Pythia:
LHC minimum bias

p~500 MeV/c
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