Potential of Monolithic CMOS Pixel Detectors for Future Track Triggers

André Schöning
Heidelberg University
Physics Institute

Connecting the Dots 2017
Orsay, Paris
6. March 2017

Overview

Part I

- motivation for track triggers
- track trigger methodologies
- requirements for future track triggers (upgraded LHC and beyond (FCC))

Part II

monolithic CMOS pixel detector technologies

Part III

- track trigger designs based on monolithic pixel detectors
- simulation results

Conclusion

- Calorimeter triggers:
- Muon triggers:
- Track triggers:

- → energy distribution and rough particle ID
- → **muon** identification and momentum
- → momentum, origin and separation of charged particles

Mutijet-Track Trigger:

Mutijet-Track Trigger:

Mutijet-Track Trigger:

→ Identification of multi-jet topologies

Isolated high-momentum track trigger:

Isolated high-momentum track trigger:

Isolated high-momentum track trigger:

 \rightarrow signature for high momentum e, μ , τ leptons (electroweak processes)

track triggers can provide useful information about:

- particle momentum
- particle direction
- origin (primary vertex, secondary vertex)
- particle counting
- particle isolation (→ lepton identification)
- particle identification (in combination with other triggers)
 - → complementary to calo/muon triggers
 - → improve selectivity of trigger in general

Track Trigger Methodologies I

• Track counting:

requires one tracking layer

→ useless information for high pileup events (colliders)

Track Trigger Methodologies II

- → z-vertex reconstruction only possible with two pixel layers
- → momentum reconstruction only by applying beam-line constraint

Track Trigger Methodologies III

→ full track parameter determination with three pixel layers (if multiple scattering is negligible)

The Track Trigger Enemies

Enemy I: Track Linking and Hit Confusion Problem

- → hit ambiguities are best resolved in 3D (pixel)
- → pixel information simplifies track linking and improves purity!

Enemy II: Hit Rates and Limited Readout Bandwidth

- rates in ATLAS detector for HL-LHC
- readout of all hits for every bunch crossing only feasible for large radii
- → full tracking requires track trigger layers at large radii
 - \rightarrow large sensitive areas

Enemy III: Complexity

Enemy III: Complexity

For fast track triggers there is just no time performing complex operations:

- local processing preferred over global processing
- linearisations instead of non-linear problem solving
- use simple (stacked) geometries which reduce the hit confusion problem

→ tracking detector design issue!

Enemy IV: Tracking Material

Tracks with momenta of p< O(10 GeV) are dominated by multiple scattering (MS) at LHC

- adds additional complexity for track reconstruction
- increases significantly **phase space** of allowed patterns
- relevant for all methods of track reconstruction:
 - Kalman fitler
 - lookup techniques
 - associated memories (AM)
 - Hough trafo, conformal mapping

Material also increases the probability for

- electromagnetic interactions
- nuclear interactions
 - → secondary & tertiary particles

$$PS \propto \frac{1}{p^{(N-1)}} \left| \prod_{i=1}^{N-1} \frac{X_i}{X_{0,i}} \right|^{\frac{1}{2}} \prod_{i=0}^{N} \frac{\Delta R_i}{\Delta Z_i}$$

The Seven Requirements for Future Track Triggers

- highly granular pixel
 - → 3D tracking and vertexing
 - → reducing ambiguities
- little material
 - → reduces MS, secondary interactions and thus confusion problem
- good timing
 - → resolve bunch crossing
- high efficiency @ low noise
 - → fewer tracking layers
 - → reducing ambiguities
- fast readout capabilities
 - → high track rates
- radiation hardness
 - → high track rates
- affordable
 - → large sensitive areas

Mupix7 HV-CMOS AMS 180 nm

Part II

→ monolithic CMOS pixel detector technologies

Pixel Readout Concepts

sensor RO-chip

Pixel Readout Concepts II

sensor RO-chip

monolithic design with trigger output

Mupix7 HV-CMOS AMS 180 nm

Pixel Detector Comparison

pixel detector	pixel size (µm²)	thickness/X ₀	monolithic
ATLAS IBL	50 x 250	1.9%	no
CMS (current)	100 x 150	~2.0%	no
CMS (upgrade)	25 x 100 or 50 x 50	~1.1%	no
ALICE (current)	50 x 425	~1.1%	no
ALICE (upgrade)	29 x 27	~0.3%	yes
STAR	21 x 21	~0.4%	yes
Belle II	50 x 75	~0.2%	no
Mu3e	80 x 80	~0.1%	yes

monolithic concept → thin tracking layers with high pixel granularity

ALICE Upgrade: ALPIDE Project

~ 10 m² active surface

Pixel:

- TowerJazz 180nm with high resistivity epitaxial layer
- small N-well diode
- deep p-weel shields NWELL of PMOS transistors
- pixel size 27 x 29 mum
- charge collection mainly by <u>diffusion</u>
- → slow timing; not very radiation hard

Mupix for Mu3e (Search for $\mu \rightarrow eee$)

→ talks by Dorothea and Alex

Central Mupix pixel tracker

2 inner vertex layers 2 outer pixel layers

A.Schöning, Heidelberg University

High Voltage-Monolithic Active Pixel Sensor (HV-MAPS)

- active sensor
 - \rightarrow hit finding + digitisation + readout
- HV-CMOS: 60-85 V (Austria Micro Systems)
- charge collection by <u>drift</u> → fast timing
- "low cost" process
- sensor thickness 50 μm
- zero suppressed continuous readout of all hits
- fast serial links (1.5 Gbit/s) integrated

Mupix7 Prototype Test Results

time resolution of hits:

efficiency and noise:

efficiency after irradiating 5e15 neutrons/cm²:

201611_psi_carrier_5e15_eff_hpRemoved.pdf

ATLAS CMOS Demonstrator Project

CMOS technologies considered for (non-)monolithic CMOS designs:

- AMS (Austria Microsystems) 180 nm HV-CMOS (Depleted MAPS)
 - charge collection mainly by drift
- Lfoundry 150nm with high resistivity substrate (Depleted MAPS)
 - charge collection mainly by drift
- TowerJazz 150nm with epitaxial layer (low fill factor)
 - charge collection mainly by diffusion
- TSMC 90 nm with epitaxial layer (low fill factor)
 - charge collection mainly by diffusion

Recent Monolithic Pixel Chip Submission

AMS aH18 process

- HV-CMOS 180 nm
- being diced right now

Mupix8 for Mu3e (+LHC)

- 80 x 80 μm² pixel
- comparator in periphery
- track trigger outputs

23mm

main designer I.Peric (KIT)

dedicated test structures

- 40 x 130 µm² pixel
- comparator in pixel
- track trigger outputs

The Seven Requirements for Future Track Triggers

- highly granular pixel
 - → 3D tracking and vertexing
 - → reducing ambiguities
- little material
 - → reduces MS and confusion problem
- good timing
 - → resolve bunch crossing
- high efficiency @ low noise
 - → fewer tracking layers
 - → reducing ambiguities
- fast readout capabilities
 - → high track rates
- radiation hardness
 - → high track rates
- affordable
 - → large sensitive areas

Mupix7 HV-CMOS AMS 180 nm

Part III

- → track trigger designs based on monolithic pixel detectors
- → simulation results

Simple Track Trigger Design

Studied Track Trigger Design (ATLAS-"inspired")

Optimal Distance between Trigger Layers?

Momentum measurement only possible if:

$$d^2 > 8b^2 \chi_{cut}^2$$
 with $b = 45 mm \frac{Tesla}{B} \sqrt{x/X_0}$

(multiple scattering limit for tracking → arXiv:1606.04990)

for
$$\chi_{cut}^2 = 15$$
, $B = 2$ Tesla, $\frac{X}{X_0} = 0.01$

follows: d > 6 mm

Simulation Study

Simulation Setup

- fast simulation including all electromagnetic IA (brems, photon conversions)
- upgraded LHC scenario: proton-proton collision with 200 pileup events
- monolithic triplet layers with 40 x 40 μm² pixel size at radius = 100 cm with d=2cm
- Material per tracking layer 1.5% X₀
- cylindrical geometry

Monte Carlo Samples

- Pythia 8 for MinBias events for purity studies
- $Z' \rightarrow \text{ttbar with m}(Z)=3 \text{ TeV for efficiency studies}$
- (HH → bbar tau tau)
 - → first preliminary results

Simulated Z₀ Resolution

event vertex can be reconstruction with a resolution of a few mm in z-direction (depends on tracker material)

 $\sigma(z_0) \sim 2.5 \text{ mm}$

→ good separation of pileup events possible!

Track Finding Efficiency

- → Track reconstruction efficiency ~ 100% *
- Track purity is close to 100% (not shown)

^{*} assuming 100% single hit efficiency

Conclusion

- Monolithic pixel sensors are ideal for realizing track triggers
- Prototypes of depleted MAPS have been successfully qualified for HL-LHC within the ATLAS CMOS demonstrator project; new test chips are being produced
- Reconstruction of all tracks for PU=200 @ 40 MHz seems possible with high efficiency and purity using a special tracker design (stacked layers)
- Such a track trigger could trigger on isolated leptons, multi-jet topologies, etc.
- Studies are ongoing ...

Outlook

Study concrete designs using full GEANT simulation:

example layout:

top view of one ladder:

Backup

Typical LHC Experiment

- O(10000) charged tracks at HL-LHC
- material budget ~ 2-3% / layer
- 10-12 layers per experiment for R≤1m

Uncertainties:

- hit resolution ~ 15 $\mu m \rightarrow \sigma_{\Theta} \approx 0.15$ mrad
- scattering: $\sigma_{\Theta} \propto \frac{1}{p} \sqrt{X/X_0} \rightarrow \mathbf{p_{crit}} = 15 \text{ GeV/c}$

p≤10 GeV/c

- multiple scattering uncertainty dominates
- ~99% of particles

p≥10 GeV/c

- hit uncertainty dominates
 - ~1% of particles

