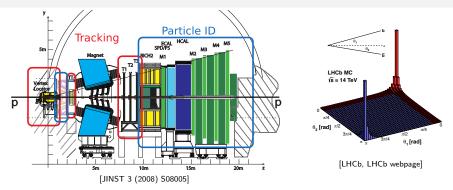


INTERNATIONAL MAX PLANCK RESEARCH SCHOOL


Fast, Parallel and Parametrized Kalman Filters for LHCb upgrade

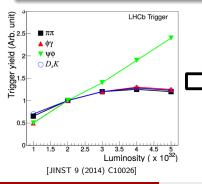
Simon Stemmle

On behalf of the LHCb collaboration Physikalisches Institut Heidelberg

CTD/WIT 06.-09.03.2017

The LHCb detector

Key features


- Single arm, forward region detector at the LHC
- Main focus is the study of b- and c-quark systems: e.g. new physics in CP-violation and rare decays
- \bullet Excellent vertex/decay time (\sim 45fs) and momentum (0.5 1%) resolution [Int. J. Mod. Phys. A 30, 1530022 (2015)]

The LHCb upgrade

Motivation

- Many physics results will still be statistically limited at the end of Run II (2018)
- Need to run at a much higher Luminosity:

$$4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1} \text{ (Run I,II)} \rightarrow 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \text{ (Run III)}$$

Currently:

 \bullet L0 hardware trigger: 30 MHz \to 1 MHz

Upgrade:

- Detector readout @ 30 MHz
- Removed hardware trigger. Software trigger with full reconstruction

Upgrade (tracking): Higher granularity detectors with fast read out

Upstream **T**racker

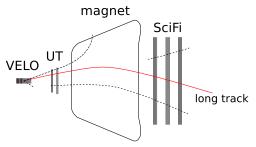
- Silicon strip technology $(95 180 \,\mu\text{m} \text{ pitch})$
- 4 tracking layers $(0^{\circ}/+5^{\circ}/-5^{\circ}/0^{\circ})$

Scintillating Fiber tracker

- Scintillating fibers (250 μ m diameter)
- 12 tracking layers ($\sim 5 \times 6 \text{ m}^2$) $3\times(0^\circ/+5^\circ/-5^\circ/0^\circ)$

VErtex **LO**cator

- Silicon pixel sensors $(55 \times 55 \,\mu\text{m}^2)$
- 26 tracking layers
- 5.1 mm away from the beam


ECAL HCAL

Magnet SciF RICH2

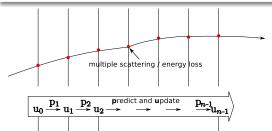
Ma

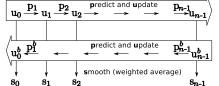
[CERN-LHCC-2013-021] [CERN-LHCC-2014-001]

Track reconstruction in the fast (first) trigger stage

- Reconstruct all VELO tracks
- Expand with UT hits
- Find matching hits in SciFi (require $p_T > 400 \text{ MeV}$)
- Only these tracks are further reconstructed

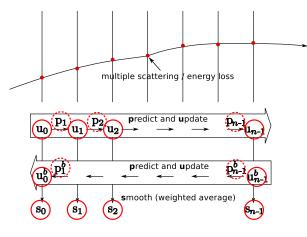
[LHCb-PUB-2017-005]


Challenges


- The 30 MHz readout and the increased luminosity make a significant speed-up in the online reconstruction necessary (5 ms per event, factor 2-3 missing)
- Currently around 60% of the track reconstruction time is spent on the track fitting (Kalman filter)

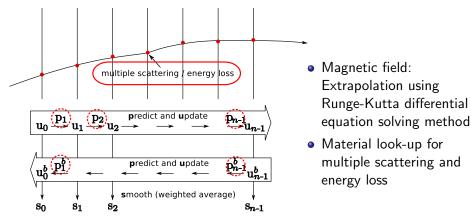
Kalman filter in the upgrade

Principles of a Kalman filter


- Sequential adding of new information (hits) to obtain an optimal track estimate
- The strategy at LHCb is:
 Filtering Forward + Filtering Backward + Smoothing

What are the time critical parts?

1. Costly matrix algebra

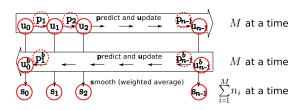


- mainly 5 × 5 matrix multiplications and inversions
- all Kalman filter steps are affected
- necessary and irreducible calculations

$$\mathbf{x} = (x, y, t_x, t_y, \frac{q}{p})$$

\rightarrow Parallelize these calculations

2. Costly detector modelling



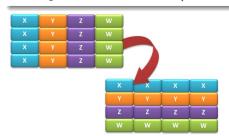
 \rightarrow Find simple parametrizations for both

Parallelized Kalman Filter

- A Kalman Filter is fundamentally non-parallel
 - Sequential predicting and updating for every hit (forward and backward)
 - Only the smoother step is independent for all hits
- But: Between different tracks the process is:
 - 1. Independent \rightarrow highly parallelizable
 - 2. Always the same (matrix operations) \rightarrow even **vectorizable (SIMD)**

For M tracks

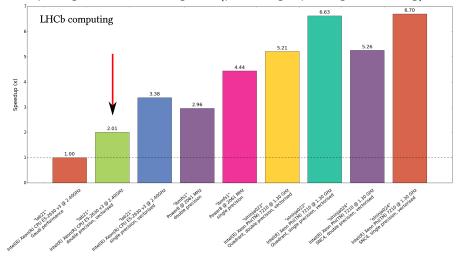
The scheduler - Flexible vectorisation

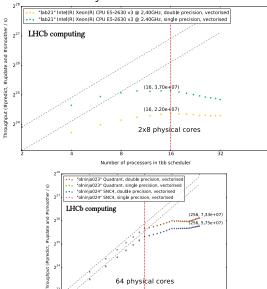

- What we want:
 - Perform filter steps for several tracks at the same time on a single core
 - Avoid empty vector units although tracks have different number of hits
- The scheduler
 - Static scheduler for available cores and vector units
 - Same schedule for forward/backward and smoothing
 → Preserves data structure ordering for posterior smoothing
- Cross architecture
 - Configurable vector width at compile time
 - Precision can also be switched

```
it in out act vector (#particle-#hit)
#540: 0000 0001 1111 { 112-9 80-11 81-11 113-10 }
#541: 0001 1110 1111 { 112-10 80-12 81-12 79-3 }
#542: 1110 0000 1111 { 107-2 109-1 108-2 79-4 }
#543: 0000 0000 1111 { 107-3 109-2 108-3 79-5 }
#544: 0000 0000 1111 { 107-4 109-3 108-4 79-6 }
#545: 0000 0000 1111 { 107-4 109-3 108-4 79-6 }
#546: 0000 0000 1111 { 107-5 109-4 108-5 79-7 }
#546: 0000 0000 1111 { 107-7 109-6 108-7 79-9 }
#548: 0000 0000 1111 { 107-7 109-6 108-7 79-9 }
#548: 0000 0000 1111 { 107-8 109-7 108-8 79-10 }
#549: 0000 0000 1111 { 107-8 109-8 108-9 79-11 }
```

Data structures

Array Of Structures Of Arrays


- Data is correctly aligned for the use of SIMD processors
- Vector width is represented at compile time
- E.g.: State information (x, covariance, χ^2) aligned in groups of 4


$\int x_0$	x_1	x_2	x_3
y_0	y_1	y_2	y_3
tx_0	tx_1	tx_2	tx_3
ty_0	ty_1	ty_2	ty_3
\underline{q}	\underline{q}	\underline{q}	\underline{q}
p_0	p_1	p_2	p_3
$c_{0,0}$	$c_{1,0}$	$c_{2,0}$	$c_{3,0}$
$c_{0,1}$	$c_{1,1}$	$c_{2,1}$	$c_{3,1}$
:	- :	:	- :
$c_{0,14}$	$c_{1,14}$	$c_{2,14}$	$c_{1,14}$
χ^2_0	χ^2_1	χ^2_2	χ^2_3

Performance

Speed gain of "matrix algebra" (predicting, updating, smoothing)

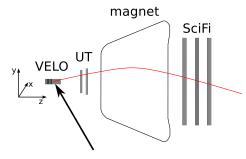
Scalability of the Kalman Filter

256

Conclusion - Parallelized Kalman Filter

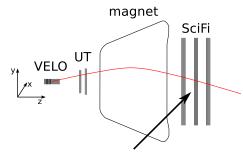
- Vectorised the Kalman Filter for several fits in parallel
- Flexible across different architectures
- Around 2× speed up for the "matrix algebra" part
- Integrated in the full Kalman framework:
 - Speed up of around 10 20%
 - Track extrapolation and material correction might also be parallelized in the future

More information: LHCb-TALK-2016-372

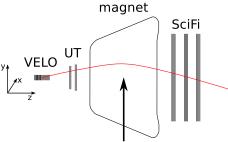

Parametrized Kalman Filter

Basic idea: use simple parametrizations..

- ..for the extrapolation from one detector layer to the next
- ..for the noise added due to multiple scattering


General remarks

- Energy loss is not explicitly taken into account, but:
 - Each extrapolation is tuned to match initial momentum at the vertex
 - The extrapolation is tuned to MC truth (with energy loss)
 - \rightarrow Energy loss is implicitly contained in the parametrization of the extrapolation
- The Jacobian matrix can be easily obtained by simple derivatives
- Ongoing work, still very preliminary


Inside the VELO (weak mag. field)

- Straight line prediction for y
- First order correction in q/p for x (effect is small)

Inside the SciFi stations (medium mag. field)

- Empirical parametrization depending on q/p and y for prediction
- e.g.: $t_{x}' = t_{x} + par_{1}\frac{q}{p} + par_{2}\left(\frac{q}{p}\right)^{3} + par_{3}y^{2}\frac{q}{p}\left|\frac{q}{p}\right|$

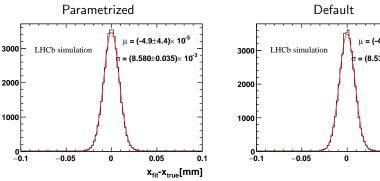
Between VELO and SciFi stations (strong mag. field)

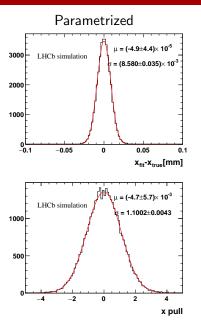
• More sophisticated parametrization based on:

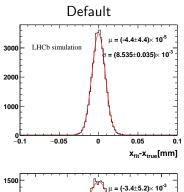
$$\Delta p_{x} = p \left(\frac{t_{x,T}}{\sqrt{1 + t_{x,T}^{2} + t_{y,T}^{2}}} - \frac{t_{x,V}}{\sqrt{1 + t_{x,V}^{2} + t_{y,V}^{2}}} \right) = q \int |d\mathbf{l} \times \mathbf{B}|$$
 $x_{T} = x_{V} + (z_{mag} - z_{V})t_{x,V} + (z_{T} - z_{mag})t_{x,T}$

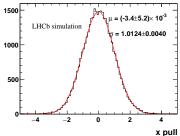
• $\int |d\mathbf{I} \times \mathbf{B}|$ and z_{mag} are parametrized as functions of the state parameters at the last VELO hit

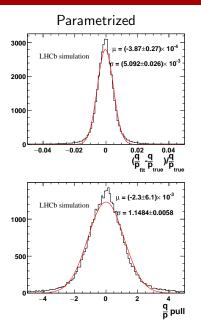
Noise matrix - Material

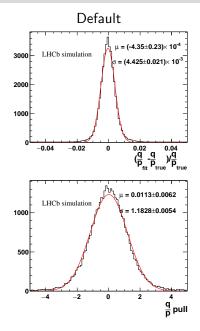

- Mostly linear parametrization in q/p; no other dependency
- Correlations between $x t_x$ and $y t_y$ are also tuned for each extrapolation
- No explicit energy loss

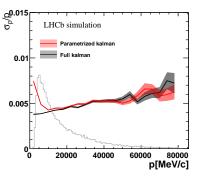

Parameter tuning

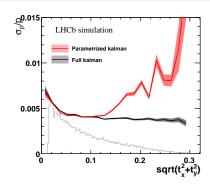

- For each extrapolation step we need (\sim O(4-20)) parameters
- Parameters are tuned by likelihood fits of a Gaussian to e.g. $(f_{t_v}(x) t_x^{true})/\sigma_{t_v}$ using MC truth


Comparison with the default full Kalman Filter

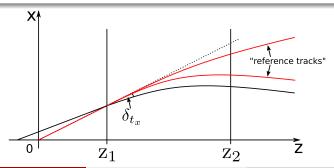

- First trigger stage: Only tracks with $p_T > 400 \,\mathrm{MeV}$ and hits in the SciFi
 - → Mainly relatively high momentum tracks starting near the primary vertex
- Compare states and covariances at the first VELO hit







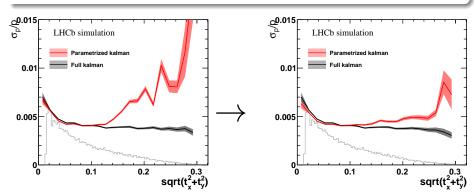
Momentum resolution



- At low momentum: wrongly modelled multiple scattering
- Higher order corrections in t_x , t_y seem necessary. Two solutions:
 - Use alternative parametrization for the step VELO->SciFi stations (next slide)
 - Use the full default Kalman filter for these tracks

Alternative VELO↔SciFi stations prediction

See talk by Pierre Billoir for details. Basic Idea:


- Use primary (x,y=0 at z=0) tracks as "reference":
 - For them the extrapolation is a expansion in $\frac{q}{p}$ (4th order)
 - Using coefficients that are tabulated as a function of x, y
- Perform a expansion in the deviation from these tracks $(\delta_{t_x}$ and $\delta_{t_y})$ for the correction of the coefficients of the $\frac{q}{p}$ expansion

Alternative VELO↔SciFi stations prediction

For this purpose

- Additional overall $\frac{q}{p}$ correction necessary to account for energy loss
- Tuned for $p > 3 \,\text{GeV} \rightarrow \text{apply this cut (loose 1-2\%)}$

Speed up and conclusion - Parametrized Kalman Filter

Timing performance

- In the current framework, 30 50% is spent on extrapolation/material effects
- This can be sped up by a factor \sim 5-10 using the simplified parametrizations
- Not yet implemented in the current framework

Conclusion: Study is still in development but seems promising

- For a large fraction of tracks the results are comparable to the full Kalman filter
- Even better: We can predict for which tracks it works and for which not

Summary

Two strategies for speeding up the LHCb Kalman filter were presented:

- The parallelization of the "matrix algebra" part using SIMD
 - Yields a factor 2 in timing for these methods
 - Integrated in the full framework: speed gain of 10-20%

- Using simple parametrizations for magnetic field and material effects
 - Promising for most of the tracks in the first trigger stage
 - Speed gain of factor 5-10 for the respective part

Thank you for your attention