
The HEP.TrkX Project:
Deep Neural Networks for

HEP Tracking

Steve Farrell
on behalf of the HEP.TrkX project

Connecting the Dots / Intelligent Trackers Workshop
March 9, 2017

Introduction

• Current tracking algorithms have been used very
successfully in HEP/LHC experiments
• Good efficiency and modeling with acceptable throughput/

latency
• However, they don’t scale so well to HL-LHC conditions

• Thousands of charged particles, O(105) 3D spacepoints,
while algorithms scale worse than quadratic

• Thus, it’s worthwhile to try and think “outside the box”; i.e.,
consider Deep Learning algorithms
• Relatively unexplored area of research
• Might see major improvements… who knows?

2

The HEP.TrkX project

• A 1-year pilot project to develop ML algorithms for HEP tracking
• Funded by DOE ASCR and COMP HEP, part of HEP CCE
• Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL

• Some goals
• Explore the broad space of ideas on simplified tracking problems
• Develop a toolkit of promising ideas

• ideas that work (physics constraints)
• ideas that scale (computing constraints)

• The work is in an exploratory phase
• Testing ideas in a breadth-first fashion
• Very much a work-in-progress

3

LBL: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

Current algorithmic approach (ATLAS, CMS)

• Divide the problem into sequential
steps

1. Cluster hits into 3D spacepoints
2. Build triplet “seeds”
3. Build tracks with combinatorial

Kalman Filter
4. Resolve ambiguities and fit tracks

4

Credit: Andy Salzburger

How to incorporate machine learning techniques?

• What part(s) of the problem to replace?
• Seeding, single-track building, fitting?
• Seeded multi-track finding?
• All-in-one hits to list of tracks?

• How to represent the data?
• Clustered hits in continuous space or raw pixel data?

• or binned clusters..?
• List of hits, or list of 4-momenta?

• uncertainties, too?
• How to deal with the many challenges?

• sparsity and irregularity in the data
• defining differentiable cost functions (wrestling ambiguities)
• requirements for fine-level control and interpretability of the model
• and of course: space and time complexity constraints!

5

Deep neural network architectures

• Fully-connected (feed-forward) networks
• Vanilla MLPs with fixed input, output size

• Good for classification, regression

• Common building block in complex models

• Recurrent networks
• Model dependencies in sequence data

• Variable-length data

• Convolutional networks
• Hierarchical pattern finders (local to global)

• Exploit translational invariance in data
6

http://www.asimovinstitute.org/neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo

LSTM networks

• LSTM (Long Short Term Memory) networks are recurrent neural networks that
model long term dependencies in sequence data by carrying a memory

• Can be used for state estimation and modeling of track dynamics
• Kinda like a Kalman Filter
• But it might actually be smarter!

• Maybe it can model combinatorics for a track in one pass
• Maybe it can process multiple tracks at once

7
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Convolutional networks as track finders

• Convolutional filters can be thought of as track pattern matchers
• Early layers look for track stubs
• Later layers connect stubs together to build tracks
• Learned representations are in reality optimized for the data => may be abstract

and more compact than brute force pattern bank
• The learned features can be used in a variety of ways

• Extract out track parameters
• Project back to detector image and classify hits

8

ç

Input track image Stub features Segment features

Stub filters

Higher level
features

etc.

Convolutions and pooling

?

Datasets

• Currently working with absurdly simple
toy datasets
• Straight line tracks in 2D or 3D on simple

detector planes
• Perfect binary hits; no holes or charge-sharing
• Random background tracks and/or uniform noise

• We have also started playing with ACTS data
• KF-like models being explored now
• The models I show today need to be extended to work on

“realistic geometry”
• Even then we expect to ignore endcaps for now ;)

9

2D toy data 3D toy data

ACTS generic tracker

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

10

Try to
reconstruct
this track

Seed hits

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

• Detector plane pixel arrays fed into the model
one at a time

11

LSTM

FC

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

• Detector plane pixel arrays fed into the model
one at a time

• The model spits out an array of “scores” for
that detector plane
• Pixel predictions (or hit “classification”)

12

LSTM

FC

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

• Detector plane pixel arrays fed into the model
one at a time

• The model spits out an array of “scores” for
that detector plane
• Pixel predictions (or hit “classification”)

• The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

13

LSTM LSTM

FC FC

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

• Detector plane pixel arrays fed into the model
one at a time

• The model spits out an array of “scores” for
that detector plane
• Pixel predictions (or hit “classification”)

• The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

14

LSTM LSTM LSTM

FC FC FC

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

• Detector plane pixel arrays fed into the model
one at a time

• The model spits out an array of “scores” for
that detector plane
• Pixel predictions (or hit “classification”)

• The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

15

LSTM LSTM LSTM LSTM

FC FC FC FC

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

• Detector plane pixel arrays fed into the model
one at a time

• The model spits out an array of “scores” for
that detector plane
• Pixel predictions (or hit “classification”)

• The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

• The model may consider multiple candidate
paths, but hopefully converges on correct one

16

LSTM LSTM LSTM LSTM

FC FC FC FC

17

Ramp
challenge

- Rebin phi to 200
bins in each layer

- Use first layer hits
as seeds

- Loop over seeds,
use LSTM to
score hits

- For each hit, take
best track
assignment as
label

Track finding with LSTMs

• Try to build a single, seeded track from a set of
hits with backgrounds

• Detector plane pixel arrays fed into the model
one at a time

• The model spits out an array of “scores” for
that detector plane
• Pixel predictions (or hit “classification”)

• The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

• The model may consider multiple candidate
paths, but hopefully converges on correct one

• Can be made more effective in several ways
• Attach regression layer to get track params
• Iterate multiple times to smooth prediction
• Multiple tracks at once

18

LSTM LSTM LSTM LSTM

FC FC FC FC

Extending to variable-size detector layers

• LHC detector data doesn’t come in fixed size layers
• We have cylindrical layers increasing in size

• We can extend the model by first mapping each
layer onto a fixed size latent (embedding) space

• Output transformations correspondingly map a
fixed-size prediction onto the target detector layer

• Generate data for this by selecting subset of the
square detector data:

19

Input
data

Hit
predictions

LSTM LSTM LSTM LSTM

FC FC FC FC

FC FC FC FC

How about convolutional networks?

• Convolutions can also
extrapolate and find tracks

• Need to ensure information
propagates across entire
detector
• Extrapolation reach can

be limited by network
architecture

• Convolutional autoencoder
seems to be a good fit

20

Trained with 10 conv layers, no down-sampling

9-layer convolutional autoencoder

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

3D toy detector data

• Starting to get a little more “realistic”
• 10 detector planes, 32x32 pixels each
• Number of background tracks sampled from Poisson
• With/without random noise hits

• Adapting my existing models to this data is mostly straightforward
• Flatten each plane for the LSTM models
• Use 3D convolution

21

Trying more models

• Deeper LSTM model
• Adds fully-connected layers before/after

the LSTM
• Bi-directional LSTM

• Adds a second LSTM running over
sequence in reverse

• Concatenate the two outputs
• Next-layer LSTM

• Predict where the hit will be on the next detector plane, rather than
the current detector plane

• Basically just an extrapolator, but might be interesting to compare
• 3D convolutional model

• 10 layers, no downsampling
• 3D conv autoencoder model

• Uses max-pooling to downsample
• Decodes with single fully connected layer

22

LSTM LSTM LSTM LSTM
LSTM LSTM LSTM LSTM

LSTM prediction

• Sometimes gives predictions that are not smooth
• Occasionally fooled by adjacent hits, though it tends to correct itself

23

Projected input

Projected output

3 avg bkg tracks, 1% noise

Bidirectional LSTM prediction

• Very precise predictions
• can see into the future, which presumably helps

• still has few rare artifacts

24

Projected input

Projected output

3 avg bkg tracks, 1% noise

Next-layer LSTM prediction

• Next-layer model gives predictions that are less precise but smoother and more accurate
• Mostly unaffected by nearby stray hits

• With this detector occupancy, they are the best at classifying hits
• but this may change with higher occupancy

25

Projected input

Projected output

3 avg bkg tracks, 1% noise

ConvNN prediction

• Simple conv net is clean and precise in this case

26

Projected input

Projected output

3 avg bkg tracks, 1% noise

Architecture comparisons

• Models’ performance tanks with
increasing track multiplicity

• ConvNN scales the best

• Interesting tradeoffs between the
architectures

27

Uses best pixel Uses best hit pixel

End-to-end track finding

• Can we simply convert raw detector signals into
physics quantities?
• Process the detector “image” with convolutional

layers into a latent representation
• Use an LSTM to spit out the parameters of the

tracks, one by one!
• Close analogy to the image captioning problem

28

Work of Dustin Anderson

Pixels to track parameters in 2D toy data

• Sampling number of tracks from Poisson, with a maximum imposed
• Model spits out slope and intercept for each track
• With poisson(3), max=6, give mean validation loss = 1.6

• Work ongoing to implement this with an attention mechanism and
also fold in hit assignment

29

Estimating uncertainties on parameters

• In addition to the track parameters, we would need the covariance
• How do we extend the model to spit out reasonable uncertainties?

• Add additional output to model for the covariance matrix:

• Replace mean-squared-error loss function with a log gaussian likelihood:

30

Estimating uncertainties on parameters

• We can visualize the uncertainties on the predictions

• However, it does get unstable with large numbers of tracks

31

Improvements in
development

Visualizing convolutional networks

• First layer filters don’t really look like track stubs, as intuition might suggest
• The model instead learns something abstract, probably more compact

• We can iteratively optimize input images for specific filters, letting us visualize
what kinds of features the network is looking for:

32

From the 2D conv
autoencoder hit classifier

From the 2D track
parameter estimator model

Conclusion

• The HEP.TrkX project was formed to investigate ideas for applying machine
learning algorithms to the problem of HEP tracking
• We’re still in an exploratory phase, testing things out, having fun

• A number of ideas have been demonstrated already on very simple toy data
• LSTM and convolutional networks for track finding
• End-to-end track finding with Conv + LSTM
• Other things I haven’t covered today

• Our game plan for the next few months:
• Increase complexity and realism of the problem (e.g., ACTS data)
• Converge on a small number of ideas to explore in depth
• Compare to reasonable baselines (e.g. Kalman filter) in performance and

complexity
• Pay attention for our future results!

33

Backup

34

Other ideas - data transforms

• Hough Transform breaks down in LHC-like data due to process noise
and high occupancy

• But what if a deep network could learn a mapping to group together
hits that belong to the same track?
• You don’t need to impose a specific representation
• The model could take event context into account

35

Other ideas - graph convolutions

• Graph convolutions operate on graph-structured data, taking into account
distance metrics
• https://tkipf.github.io/graph-convolutional-networks/

• Connections between ~plausible hits on detector layers can form the graph
• Handles sparsity naturally
• Scales naturally with occupancy

• I haven’t dedicated much thought to this yet, but it may be versatile enough to
do the kinds of things I’ve already demonstrated

36

https://tkipf.github.io/graph-convolutional-networks/

LHC tracking

37

ATLAS tracking in dense environments

38
Stolen from Ben Nachman’s TPM presentation:
https://indico.physics.lbl.gov/indico/event/433/

https://indico.physics.lbl.gov/indico/event/433/

LSTMs for track finding (2D toy data)

39

Single track Two tracks

Single track with noise Single track with background tracks

Model architectures - LSTM

40

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 9, 1024) 0
__
lstm_1 (LSTM) (None, 9, 1024) 8392704 input_1[0][0]
__
timedistributed_1 (TimeDistribute(None, 9, 1024) 1049600 lstm_1[0][0]
==
Total params: 9442304
__

Model architectures - Deep LSTM

41

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 10, 1024) 0
__
timedistributed_1 (TimeDistribute(None, 10, 1024) 1049600 input_1[0][0]
__
lstm_1 (LSTM) (None, 10, 1024) 8392704 timedistributed_1[0][0]
__
timedistributed_2 (TimeDistribute(None, 10, 1024) 1049600 lstm_1[0][0]
__
timedistributed_3 (TimeDistribute(None, 10, 1024) 1049600 timedistributed_2[0][0]
==
Total params: 11541504
__

Model architectures - Bidirectional LSTM

42

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 10, 1024) 0
__
bidirectional_1 (Bidirectional) (None, 10, 2048) 16785408 input_1[0][0]
__
timedistributed_1 (TimeDistribute(None, 10, 1024) 2098176 bidirectional_1[0][0]
__
timedistributed_2 (TimeDistribute(None, 10, 1024) 1049600 timedistributed_1[0][0]
==
Total params: 19933184
__

Model architectures - Next-layer LSTM

43

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 9, 1024) 0
__
lstm_1 (LSTM) (None, 9, 1024) 8392704 input_1[0][0]
__
timedistributed_1 (TimeDistribute(None, 9, 1024) 1049600 lstm_1[0][0]
==
Total params: 9442304
__

Model architectures - ConvNN

44

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 10, 32, 32) 0
__
reshape_1 (Reshape) (None, 1, 10, 32, 32) 0 input_1[0][0]
__
convolution3d_1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape_1[0][0]
__
convolution3d_2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_1[0][0]
__
convolution3d_3 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_2[0][0]
__
convolution3d_4 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_3[0][0]
__
convolution3d_5 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_4[0][0]
__
convolution3d_6 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_5[0][0]
__
convolution3d_7 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_6[0][0]
__
convolution3d_8 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_7[0][0]
__
convolution3d_9 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_8[0][0]
__
convolution3d_10 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_9[0][0]
__
convolution3d_11 (Convolution3D) (None, 1, 10, 32, 32) 217 convolution3d_10[0][0]
__
reshape_2 (Reshape) (None, 10, 1024) 0 convolution3d_11[0][0]
__
timedistributed_1 (TimeDistribute(None, 10, 1024) 0 reshape_2[0][0]
==
Total params: 16065
__

Model architectures - Conv autoencoder

45

__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) (None, 10, 32, 32) 0
__
reshape_1 (Reshape) (None, 1, 10, 32, 32) 0 input_1[0][0]
__
convolution3d_1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape_1[0][0]
__
convolution3d_2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d_1[0][0]
__
maxpooling3d_1 (MaxPooling3D) (None, 8, 10, 16, 16) 0 convolution3d_2[0][0]
__
dropout_1 (Dropout) (None, 8, 10, 16, 16) 0 maxpooling3d_1[0][0]
__
convolution3d_3 (Convolution3D) (None, 16, 10, 16, 16)3472 dropout_1[0][0]
__
convolution3d_4 (Convolution3D) (None, 16, 10, 16, 16)6928 convolution3d_3[0][0]
__
maxpooling3d_2 (MaxPooling3D) (None, 16, 10, 8, 8) 0 convolution3d_4[0][0]
__
dropout_2 (Dropout) (None, 16, 10, 8, 8) 0 maxpooling3d_2[0][0]
__
convolution3d_5 (Convolution3D) (None, 32, 10, 8, 8) 13856 dropout_2[0][0]
__
maxpooling3d_3 (MaxPooling3D) (None, 32, 10, 4, 4) 0 convolution3d_5[0][0]
__
dropout_3 (Dropout) (None, 32, 10, 4, 4) 0 maxpooling3d_3[0][0]
__
convolution3d_6 (Convolution3D) (None, 64, 10, 4, 4) 55360 dropout_3[0][0]
__
maxpooling3d_4 (MaxPooling3D) (None, 64, 10, 2, 2) 0 convolution3d_6[0][0]
__
dropout_4 (Dropout) (None, 64, 10, 2, 2) 0 maxpooling3d_4[0][0]
__
convolution3d_7 (Convolution3D) (None, 96, 10, 2, 2) 73824 dropout_4[0][0]
__
maxpooling3d_5 (MaxPooling3D) (None, 96, 10, 1, 1) 0 convolution3d_7[0][0]
__
dropout_5 (Dropout) (None, 96, 10, 1, 1) 0 maxpooling3d_5[0][0]
__
convolution3d_8 (Convolution3D) (None, 128, 10, 1, 1) 36992 dropout_5[0][0]
__
permute_1 (Permute) (None, 10, 128, 1, 1) 0 convolution3d_8[0][0]
__
reshape_2 (Reshape) (None, 10, 128) 0 permute_1[0][0]
__
timedistributed_1 (TimeDistribute(None, 10, 1024) 132096 reshape_2[0][0]
==
Total params: 324488
__

