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Introduction

e Current tracking algorithms have been used very
successfully in HEP/LHC experiments

» Good efficiency and modeling with acceptable throughput/
latency

* However, they don’t scale so well to HL-LHC conditions

» Thousands of charged particles, O(10°) 3D spacepoints,
while algorithms scale worse than quadratic

* Thus, it's worthwhile to try and think “outside the box”; i.e.,
consider Deep Learning algorithms

* Relatively unexplored area of research
* Might see major improvements... who knows?



The HEP.TrkX project

* A 1-year pilot project to develop ML algorithms for HEP tracking
* Funded by DOE ASCR and COMP HEP, part of HEP CCE
* Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL

LBL.: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

e Some goals
* Explore the broad space of ideas on simplified tracking problems
* Develop a toolkit of promising ideas
* ideas that work (physics constraints)
* ideas that scale (computing constraints)
* The work is in an exploratory phase
 Testing ideas in a breadth-first fashion
* Very much a work-in-progress



Current algorithmic approach (ATLAS, CMS)

 Divide the problem into sequential
steps

1. Cluster hits into 3D spacepoints
2. Build triplet “seeds”

3. Build tracks with combinatorial
Kalman Filter

4. Resolve ambiguities and fit tracks ,‘?’
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How to incorporate machine learning techniques?

 What part(s) of the problem to replace?
« Seeding, single-track building, fitting”?
« Seeded multi-track finding?
* All-in-one hits to list of tracks?
* How to represent the data?
* Clustered hits in continuous space or raw pixel data?
* or binned clusters..?
* List of hits, or list of 4-momenta?
* uncertainties, to0?
* How to deal with the many challenges?
 sparsity and irregularity in the data
* defining differentiable cost functions (wrestling ambiguities)
* requirements for fine-level control and interpretability of the model

* and of course: space and time complexity constraints!



Deep neural network architectures

Deep Feed Forward (DFF)
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* Fully-connected (feed-forward) networks

» Vanilla MLPs with fixed input, output size

» Good for classification, regression

« Common building block in complex models

e Recurrent networks

* Model dependencies in sequence data

 Variable-length data

e Convolutional networks

 Hierarchical pattern finders (local to global)

« Exploit translational invariance in data

http://www.asimovinstitute.org/neural-network-zoo

Deep Convolutional Network (DCN)
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http://www.asimovinstitute.org/neural-network-zoo

LSTM networks

* LSTM (Long Short Term Memory) networks are recurrent neural networks that
model long term dependencies in sequence data by carrying a memory
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* Can be used for state estimation and modeling of track dynamics
* Kinda like a Kalman Filter
* But it might actually be smarter!
* Maybe it can model combinatorics for a track in one pass
* Maybe it can process multiple tracks at once

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Convolutional networks as track finders

Input track image Stub features Segment features
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e Convolutional filters can be thought of as track pattern matchers

« Early layers look for track stubs

 Later layers connect stubs together to build tracks

Higher level
features
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* Learned representations are in reality optimized for the data => may be abstract
and more compact than brute force pattern bank

 The learned features can be used in a variety of ways

» Extract out track parameters

* Project back to detector image and classify hits



Datasets

e Currently working with absurdly simple ACTS generic tracker
toy datasets -

 Straight line tracks in 2D or 3D on simple
detector planes

 Perfect binary hits; no holes or charge-sharing

 Random background tracks and/or uniform noise

 We have also started playing with ACTS data

1000+ rrrrrrr—r e
~2500 -2000 -1500 1000 -5

* KF-like models being explored now

* The models | show today need to be extended to work on
“realistic geometry”

* Even then we expect to ignore endcaps for now ;)

2D toy data 3D toy data

Single track Multi-track Single track with noise




Track finding with LSTMs

* Try to build a single, seeded track from a set of
hits with backgrounds

Seed hits

/

Try to
reconstruct
this track

Pixel

Input

Layer
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Track finding with LSTMs

* Try to build a single, seeded track from a set of
hits with backgrounds

» Detector plane pixel arrays fed into the model
one at a time

Model prediction
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Track finding with LSTMs

* Try to build a single, seeded track from a set of
hits with backgrounds

» Detector plane pixel arrays fed into the model
one at a time

* The model spits out an array of “scores” for
that detector plane

* Pixel predictions (or hit “classification”)

Model prediction
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Track finding with LSTMs

* Try to build a single, seeded track from a set of
hits with backgrounds

» Detector plane pixel arrays fed into the model
one at a time

* The model spits out an array of “scores” for
that detector plane

* Pixel predictions (or hit “classification”)

 The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

Model prediction
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Track finding with LSTMs

odel prediction

* Try to build a single, seeded track from a set of
hits with backgrounds

» Detector plane pixel arrays fed into the model
one at a time

* The model spits out an array of “scores” for
that detector plane ° 10% 0
* Pixel predictions (or hit “classification”)

 The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration
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Track finding with LSTMs

* Try to build a single, seeded track from a set of
hits with backgrounds

» Detector plane pixel arrays fed into the model
one at a time

* The model spits out an array of “scores” for
that detector plane

* Pixel predictions (or hit “classification”)

 The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration




Track finding with LSTMs

Model prediction

* Try to build a single, seeded track from a set of
hits with backgrounds

40

» Detector plane pixel arrays fed into the model J
one at a time
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* The model spits out an array of “scores” for

that detector plane °o/, 10\,%3&

* Pixel predictions (or hit “classification”)

 The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

* The model may consider multiple candidate
paths, but hopefully converges on correct one




Model prediction

Ramp
challenge

Pixel bin
Pixel bin
Pixel bin

Rebin phi to 200

bins in each layer -
Use first Iayer hits Model prediction
as seeds

Loop over seeds,
use LSTM to
score hits

For each hit, take
best track
assignment as
label

Pixel bin
Pixel bin
Pixel bin
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Track finding with LSTMs

Model prediction

* Try to build a single, seeded track from a set of
hits with backgrounds

40

30

» Detector plane pixel arrays fed into the model
one at a time
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* The model spits out an array of “scores” for

that detector plane °o/, 1%\,2@,\{

* Pixel predictions (or hit “classification”)

 The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

* The model may consider multiple candidate
paths, but hopefully converges on correct one

« Can be made more effective in several ways
 Attach regression layer to get track params
* |terate multiple times to smooth prediction

* Multiple tracks at once




Extending to variable-size detector layers

* LHC detector data doesn’t come in fixed size layers
* We have cylindrical layers increasing in size I | Hit

« We can extend the model by first mapping each predictions
layer onto a fixed size latent (embedding) space / \

» Output transformations correspondingly map a
fixed-size prediction onto the target detector layer

« Generate data for this by selecting subset of the
square detector data:

Input Model prediction

Vee

Input
data




How about convolutional networks?

_ Trained with 10 conv layers, no down-sampling
* Convolutions can also input Model prediction

extrapolate and find tracks

* Need to ensure information
propagates across entire
detector

Pixel

« Extrapolation reach can
be limited by network
aI’ChIteCture 0 10 20Layer 30 40 0 10 ZOLByer 30 40

9-layer convolutional autoencoder

* Convolutional autoencoder L pote: precicien

seems to be a good fit

0 10 20 30 40 0 10 20 30 40
Layer Layer

20
https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694



https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

3D toy detector data
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 Starting to get a little more “realistic”

* 10 detector planes, 32x32 pixels each

* Number of background tracks sampled from Poisson

 With/without random noise hits

* Flatten each plane for the LSTM models

* Adapting my existing models to this data is mostly straightforward
* Use 3D convolution

21



Trying more models

* Deeper LSTM model

» Adds fully-connected layers before/after
the LSTM

* Bi-directional LSTM

* Adds a second LSTM running over
sequence In reverse
« Concatenate the two outputs I I I I

* Next-layer LSTM

* Predict where the hit will be on the next detector plane, rather than
the current detector plane

« Basically just an extrapolator, but might be interesting to compare
« 3D convolutional model

* 10 layers, no downsampling
« 3D conv autoencoder model

* Uses max-pooling to downsample

* Decodes with single fully connected layer N



LSTM prediction

Projected input 3 avg bkg tracks, 1% noise
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« Sometimes gives predictions that are not smooth

» Occasionally fooled by adjacent hits, though it tends to correct itself
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Bidirectional LSTM prediction

Projected input

3 avg bkg tracks, 1% noise
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* Very precise predictions

* can see into the future, which presumably helps
« still has few rare artifacts
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Next-layer LSTM prediction

Projected input 3 avg bkg tracks, 1% noise

pixel y

—
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detector layer detector layer

* Next-layer model gives predictions that are less precise but smoother and more accurate

* Mostly unaffected by nearby stray hits
 With this detector occupancy, they are the best at classifying hits
 but this may change with higher occupancy
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ConvNN prediction

Projected input 3 avg bkg tracks, 1% noise
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« Simple conv net is clean and precise in this case
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Architecture comparisons

P Pixel prediction accuracy

Uses best pixel
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* Models’ performance tanks with
iIncreasing track multiplicity

« ConvNN scales the best

* Interesting tradeoffs between the
architectures
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Hit classification accuracy
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Basic LSTM accuracy

Hidden dim size
~— 128
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. = 1024
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Average number of background tracks
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End-to-end traCk flndlng Work of Dustin Anderson

* Can we simply convert raw detector signals into +
physics quantities? .
* Process the detector “image” with convolutional .
layers into a latent representation Conv (3x3) x32 |
« Use an LSTM to spit out the parameters of the Relu
tracks, one by one! " Conv(3x3)x32
* Close analogy to the image captioning problem Relu __/
Dense (400)
LSTM (400)

Vision Language A group of people
Deep CNN Generating shopplng at an
RNN outdoor market.

S | ->
N @ There are many
vegetables at the

fruit stand.

Intercept 1 Intercept 2

Intercept 3
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Pixels to track parameters in 2D toy data

« Sampling number of tracks from Poisson, with a maximum imposed
* Model spits out slope and intercept for each track
* With poisson(3), max=6, give mean validation loss = 1.6

Input Model prediction

Pixel
Pixel

0 10 20 30 40 0 10 20 30 40
Layer Layer

* Work ongoing to implement this with an attention mechanism and
also fold in hit assignment

29



Estimating uncertainties on parameters

 |n addition to the track parameters, we would need the covariance
 How do we extend the model to spit out reasonable uncertainties?

* Add additional output to model for the covariance matrix:

Dense LSTMH|OD€S and Interceptq
Dense || LSTM l—>| Cov. Matrix Parametersl

-}[Conv. Layers

* Replace mean-squared-error loss function with a log gaussian likelihood:

L(z,y) = log ||+ (y — f(x) =" (y — f(x))

Minimize this during training
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Estimating uncertainties on parameters

* We can visualize the uncertainties on the predictions

Input

Model prediction

Pixel

Layer

Layer

* However, it does get unstable with large numbers of tracks

Input

Model prediction

Pixel

Improvements in
development
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Visualizing convolutional networks

 First layer filters don't really look like track stubs, as intuition might suggest
* The model instead learns something abstract, probably more compact

HF H
From the 2D conv t N l l
autoencoder hit classifier N

n

* We can iteratively optimize input images for specific filters, letting us visualize
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Conclusion

* The HEP.TrkX project was formed to investigate ideas for applying machine
learning algorithms to the problem of HEP tracking

* We're still in an exploratory phase, testing things out, having fun
* A number of ideas have been demonstrated already on very simple toy data
 LSTM and convolutional networks for track finding
* End-to-end track finding with Conv + LSTM
* Other things | haven’t covered today
* Our game plan for the next few months:
* Increase complexity and realism of the problem (e.g., ACTS data)
* Converge on a small number of ideas to explore in depth

« Compare to reasonable baselines (e.g. Kalman filter) in performance and
complexity

» Pay attention for our future results!
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Backup
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Other ideas - data transforms

* Hough Transform breaks down in LHC-like data due to process noise
and high occupancy

H
H
PP ...
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/ i

I

parameter space

» But what if a deep network could /earn a mapping to group together
hits that belong to the same track?

* You don’t need to impose a specific representation
* The model could take event context into account
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Other ideas - graph convolutions

« Graph convolutions operate on graph-structured data, taking into account
distance metrics

* https://tkipf.qithub.io/graph-convolutional-networks/

Hdden layer Hidden layer

input e v Output
° °

* Connections between ~plausible hits on detector layers can form the graph
* Handles sparsity naturally
» Scales naturally with occupancy

| haven’t dedicated much thought to this yet, but it may be versatile enough to
do the kinds of things I've already demonstrated
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https://tkipf.github.io/graph-convolutional-networks/

LHC tracking
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ATLAS tracking in dense environments

hits in the pixel and | ambiguity solving tracks!
strip detectors
high resolution
* track fit

(use NN for cluster positions)

T recover track

>
25,
f@O,
C/(J
S
,@fs

build 3-point seeds

v

filter the seeds order tracks
‘ by score

candidate
(NN to identify
merged clusters)

_ _ reject track
combinatorial

Kalman filter

v

track
candidates

assign a
score per

candidate

clusters, holes, clusters can be shared by < 2 tracks;
1% log(pr) tracks can have < 2 shared clusters

Stolen from Ben Nachman’s TPM presentation:

https://indico.physics.Ibl.gov/indico/event/433/ 38



https://indico.physics.lbl.gov/indico/event/433/

LS TMs for track finding (2D toy data)

Single track Two tracks
Input

Model prediction

Input Model prediction

Pixel
Pixel
Pixel

Pixel

O

10 20 30
Layer

Single track with noise

Model prediction

Single track with background tracks

Input

Model prediction

Pixel

Pixel
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Model architectures - LSTM

Layer (type) Output Shape Param # Connected to

input_1 (Inputiayer)  (Nome, 5, l024) o
lstm 1 (LSTM) (None, 9, 1024) 8392704 input 1[0][0]

timedistributed 1 (TimeDistribute(None, 9, 1024) 1049600 lstm 1[0][0]

Total params: 9442304
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Model architectures - Deep LSTM

Layer (type) Output Shape Param # Connected to

input 1 (Inputiayer)  (Neme, 10, 1024) o
timedistributed 1 (TimeDistribute(None, 10, 1024) 1049600 input 1[0][0]

lstm 1 (LSTM) (None, 10, 1024) 8392704 timedistributed 1[0][0]
timedistributed 2 (TimeDistribute(None, 10, 1024) 1049600 lstm 1[0][0]

timedistributed 3 (TimeDistribute(None, 10, 1024) 1049600 timedistributed 2[0][0]

Total params: 11541504
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Model architectures - Bidirectional LSTM

Layer (type) Output Shape Param # Connected to

input_1 (Inputiayer)  (Neme, 10, 1024) o
bidirectional 1 (Bidirectional) (None, 10, 2048) 16785408 input 1[0][0]

timedistributed 1 (TimeDistribute(None, 10, 1024) 2098176 bidirectional 1[0][0]
timedistributed 2 (TimeDistribute(None, 10, 1024) 1049600 timedistributed 1[0][0]

Total params: 19933184
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Model architectures - Next-layer LSTM

Layer (type) Output Shape Param # Connected to

input_1 (Inputiayer)  (Nome, 5, l024) o
lstm 1 (LSTM) (None, 9, 1024) 8392704 input 1[0][0]

timedistributed 1 (TimeDistribute(None, 9, 1024) 1049600 lstm 1[0][0]

Total params: 9442304
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Model architectures - ConvNN

Layer (type) Output Shape Param # Connected to

input 1 (Inputiayer)  (Neme, 10, 32, 32) o
reshape 1 (Reshape) (None, 1, 10, 32, 32) 0 input 1[0][0]
convolution3d 1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape 1[0][0]
convolution3d 2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 1[0][0]
convolution3d 3 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 2[0][0]
convolution3d 4 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 3[0][0]
convolution3d 5 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 4[0][0]
convolution3d 6 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 5[0][0]
convolution3d 7 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 6[0][0]
convolution3d 8 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 7[0][0]
convolution3d 9 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 8[0][0]
convolution3d 10 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 9[0][0]
convolution3d 11 (Convolution3D) (None, 1, 10, 32, 32) 217 convolution3d 10[0][0]
reshape 2 (Reshape) (None, 10, 1024) 0 convolution3d 11[0][0]
timedistributed 1 (TimeDistribute(None, 10, 1024) 0 reshape 2[0][0]




Model architectures - Conv autoencoder

Layer (type) Output Shape Param # Connected to
reshape 1 (Reshape) (None, 1, 10, 32, 32) 0 input 1[0][0]
convolution3d 1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape 1[0]1[0]
convolution3d 2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 1[0][0]
maxpooling3d 1 (MaxPooling3D) (None, 8, 10, 16, 16) O convolution3d 2[0][0]
dropout 1 (Dropout) (None, 8, 10, 16, 16) O maxpooling3d 1[0][0]
convolution3d 3 (Convolution3D) (None, 16, 10, 16, 16)3472 dropout 1[0][0]
convolution3d 4 (Convolution3D) (None, 16, 10, 16, 16)6928 convolution3d 3[0][0]
maxpooling3d 2 (MaxPooling3D) (None, 16, 10, 8, 8) O convolution3d 4[0][0]
dropout 2 (Dropout) (None, 16, 10, 8, 8) O maxpooling3d 2[0][0]
convolution3d 5 (Convolution3D) (None, 32, 10, 8, 8) 13856 dropout 2[0][0]
maxpooling3d 3 (MaxPooling3D) (None, 32, 10, 4, 4) O convolution3d 5[0][0]
dropout 3 (Dropout) (None, 32, 10, 4, 4) O maxpooling3d 3[0][0]
convolution3d 6 (Convolution3D) (None, 64, 10, 4, 4) 55360 dropout 3[0][0]
maxpooling3d 4 (MaxPooling3D) (None, 64, 10, 2, 2) O convolution3d 6[0][0]
dropout 4 (Dropout) (None, 64, 10, 2, 2) O maxpooling3d 4[0][0]
convolution3d 7 (Convolution3D) (None, 96, 10, 2, 2) 73824 dropout 4[0][0]
maxpooling3d 5 (MaxPooling3D) (None, 96, 10, 1, 1) O convolution3d 7[0][0]
dropout 5 (Dropout) (None, 96, 10, 1, 1) O maxpooling3d 5[0][0]
convolution3d 8 (Convolution3D) (None, 128, 10, 1, 1) 36992 dropout 5[0][0]
permute 1 (Permute) (None, 10, 128, 1, 1) O convolution3d 8[0][0]
reshape 2 (Reshape) (None, 10, 128) 0 permute 1[0][0]
timedistributed 1 (TimeDistribute(None, 10, 1024) 132096 reshape 2[0][0]

Total params: 324488
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