Deep Neural Nets and Bonsai BDTs in the LHCb

pattern recognition

Adam Dendek*, on behalf of the LHCb collaboration
*AGH University of Science and Technology, Krakow Poland

Connecting The Dots / Intelligent Trackers 2017
Paris 09.03.17

Part one

Introduction

The LHCb detector

- The LHCb detector is a general purpose single arm forward spectrometer. Heavy hadrons are produced boosted in the forward region: $2<\eta<5$
- The main aim of this detector is to focus on studying CP violation in beauty and charm decays as well as rare decays of b and c hadrons

- To achieve above goals excellent detector performance is expected:
 - track reconstruction efficiency > 95 %,
 - Momentum resolution dp/p~ 0.5 1%
 - decay time resolution ~ 45 fs
 - Excellent particle identification:
 - ε(K->K) ~ 95%.
 - ε(μ->μ)-~97%.

[Int. J. Mod. Phys. A 30, 1530022] [JINST 3 S08005]

LHCb in Run II

- LHCb moved to real time reconstruction, alignment and calibration setup in Run II
- This allows to achieve the offline quality of the event selections performed at trigger level.
- The track reconstruction had to be made identical online and offline.
- We need to make track reconstruction faster without performance loss.
- Reconstruction in two stages
 - Fast stage (HLTI) for long tracks with pt>500 MeV.
 and tighter track quality requirements.
 Time per event ≈ 40 ms
 - Full stage (HLT2) achieves offline efficiency and precision. Time per event ≈ 800 ms

Track reconstruction at LHC b

- We distinguish two most important track types (from the physics analysis point of view):
- Long Tracks
 - Hits in VErtex LOcator, Inner Tracker and/or Outer Tracker and can have hits in TT
 - Used in majority of analyses
- Downstream Tracks
 - Hits in TT and IT/OT
 - Tracks from daughters of long lived particles
- The LHCb tracking contains two steps:
 - Track finding pattern recognition algorithm
 - Track fitting using Kalman filter. Used for track parameters estimation taking into account multiple scattering and energy losses.
- The tracking has to be fast and efficient keeping low fake rate!

LHCb tracking pattern recognition algorithms

- Pattern Recognition algorithms find individual hits that compose a track
- VELO Tracking: A stand-alone search is made for straight line track segments in the VELO
- T seeding: A stand-alone search is made for track segments in T stations
- Forward tracking: Starting from seeds in the Velo, tracks are searched in T stations
- Track matching: Starting from a set of tracks reconstructed in the Velo and a second set reconstructed
 in T stations, track matching attempts to match the tracks in the two sets to one another.
- Downstream tracking: Using tracks in T stations, algorithms implementing this strategy search for matching TT hits.

Part two

Machine Learning in Long Track Reconstruction

Fake long tracks rejection

- Fake long tracks mainly come from wrong matching between VELO and T stations.
 - There is no tracking detector in the magnet section, very long lever arm.
- Remaining fake tracks from Kalman filter
 x^2/dof cut ≈22%
- The aim of the project is to reject fake track at stable efficiency in early stages of processing (forward tracking)

Machine Learning in forward tracking

- Forward tracking algorithm contains following steps:
 - Search window in T station defined by VELO track estimate and minimal pt
 - Project x-hit into reference plane (create clusters) Hough transformation
 - Fit x-cluster and remove outliers
 - · Add and fit track with stereo hits
 - Recovery loop in HLT2 for track candidates with hits in only 4 x-layers
- We trained two neutral networks
 - First of them is tuned for rejection of bad 4-layer-x-clusters in recovery loop
 - · Second one is trained for candidates selection after stereo fit

Deep neural networks architecture

- The models used in forward tracking are two Feed Forward Neural Networks.
- As a lost function cross-entropy

$$\mathcal{L}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

- Measures the similarity between expected and predicted value
- One way to interpret cross-entropy is to see it as a (minus) log-likelihood for the data y under a model y'
- Models parameters are optimized to minimize this function (gradient descent algorithm)
- C-E is chosen as estimator, since it mostly leads to fast convergence and good results in terms of classification error
- As an activation unit the ReLu has been chosen.
 - efficient gradient propagation
 - Fast computation: Only comparison, addition and multiplication

Deep neural networks architecture

- The model were trained using TMVA library
- The architectures (depth and hidden unit per layer number) was the hardest hyper-parameter to tune
 - NN in recovery loop: 9 input nodes, 2 hidden layer (16 and 10 unit)
 - NN track selection: 16 input nodes, 3 hidden layer (17,9,5 units)

Classifier response for test and training sample

Ghost probability

- For Run I, a quantity called ghost probability, based on a neural network output was used offline, such that the analyst could use it as a cut variable.
- In Run II the ghost probability is calculated by the second Neural Networks online.
- According to this number algorithm decide whether accept or reject the track candidate - Final track selection
- This approach allows to decrease ghost rate from 22% to 14%

Performance of Deep Neural Networks for forward tracking

- Neural Networks were trained with MC and minimum bias events
- Results:
 - Increased efficiency
 - · Reduced fake rate considerably
 - Both Deep Neural Networks
 contribute to 2% (HLT2) and 0.5%
 (HLT1) to timing of forward
 tracking algorithm

MC performance	$\nu = 1.6$	
2016 w.r.t. 2015	w/ RL	w/o RL
timing HLT1	±0 %	
timing HLT2	+4 %	- 38 %
fake rate	– 27 %	- 35 %
fake rate HLT1	- 15 %	
arepsilon long		+0.1 %
arepsilon long from B	+0.2 %	-0.2 %
\mathcal{E}_{HLT1} long from B $p > 3, p_T > 0.5$ GeV	+0.1 %	

LHCb-TALK-2016-362

Part three

Machine Learning in Downstream Tracking

Downstream Tracking

- The downstream tracking algorithm contains following steps (listed only the most important ones from the ML point of view):
 - The algorithm is seeded by tracks reconstructed in T stations.
 - Find matching TT hits
 - Accept downstream tracks candidates

T-Seed classifier

- Downstream tracking contains two classifiers.
- The first is designed to reject as much fake T-Seeds as possible
 - Tracks that cannot be reconstructed by downstream algorithm, due to material interaction, etc.
- The classifier constrains:
 - Keep the efficiency and purity of the selected signal tracks as high as possible
 - CPU performance
- We trained a number of models including linear models, Deep Neural Networks and BDT.
- The training procedure contains model selection, hyper parameters tuning, feature engineering and overfitting checking
- The best model according to the area under ROC curve score is Boosted Decision Trees.

Bonsai Boosted Decision Trees

- Using continuous input features to calculate classifier response takes too much CPU time.
- We had to figure out how to speed-up the calculations.
- The idea is pretty simple. We discretise input features space and for each of bin calculate classifier response.
- Instead of calculating response for each tree we just need to take one number from the lookup table.
- The bBDT evolution time is O(1)!
- The table has very complex structure, no way to fit approximation function.
- This idea comes from previous study on LHCb HLT [doi:10.1088/1748-0221/8/02/P02013]

Bonsai Boosted Decision Trees How does it work?

- We don't want to generate very long and complex if-else based function
- Instead we divide feature space into bins
- for each of these bins we calculate classifier response
- To evaluate classifier response we need to find bin indices and take corresponding number from the lookup table

T-Seed classifier performance

- The current version of classifier was trained using 2M track seeds from simulated samples containing B -> J/ψ Ks signal decay.
- The classifier scores 0.86 (ROC auc).
- It corresponds to the rejection of about 40% of fake T-Seeds
- Above results obtained for validation set that constituted 20% of the input sample

Conclusions

- With help of two Deep Neural Networks LHCb reduced its its rate of fake long track by about 40%
- This was obtained without any negative influence on tracking efficiency
- The study on Downstream tracking algorithm also shows promising results
- Currently only the first classifier is implemented as Bonsai
 Boosted Decision Trees and studies on the second classifier are
 ongoing

Thank you for attention!