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| The LHCb detector

The LHCb detectoris a general purpose single arm forward spectrometer.

{ Heawy hadrons are Produced boosted in the forward region: 2<n<35

The main aim of this detector is to focus on studging CP violation in beautg

and cnarm CI!CCBgS as WC” as rarec decags O1C b and C hadrons

\ * Toachieve above goals excellent detector Perlcormance IS expectecl:

* track reconstruction emcﬁciencg >95%,

* Momentum resolution dP/P~ 0.5 ~-1%

Particle ID

Tracking [ e

SPD/PS

» clecag time resolution ~ =55 fs 5m |

Magnet
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1 * Excellent Partxcle identification: A8 IR T a 3
x Vertex| /
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* g(K->K) ~95%.

i

> E(u->p-~ 97%. b

[Int. J. Mod. Phys. A 30, 1550022]
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| HCb in Run I

L HCh moved to real time reconstruction, alignment and

calibration setul:) in Run Il

LHCb 2015 Trigger Diagram

This allows to achieve the offline qualitg of the event
selections Performecl at trigger level. 40 MHz bunch crossing rate

~ <> =>

The track reconstruction had to be made identical online

LO Hardware Trigger : 1 MHz

and offline. readout, high E;/Pr signatures

We neecl to make trac|< reconstruction Faster without

Per{:ormance IOSS.
. Software High Level Trigger

Reconstruction in two stages Partial event reconstruction, select
displaced tracks/vertices and dimuons
* [ast stage (HLTTD for long tracks with Pt>5OO MeV . :

and tighter track qualit9 requircments.

Time per event = 40 ms ‘ — . . :
Full offline-like event selection, mixture
of inclusive and exclusive triggers

+ Full stage L 2) achieves offline epﬁciencg and O

Precision. Time per event = 800 ms
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Track reconstruction at LHC b |

*We clistinguish two most imPortant track types (From the Phgsics analysis Point of

view) : f

e

N Long Tracks

* Hits in VErtex LOcator, Inner Tracker and/or Outer Tracker and can have hits in TT

e e

* (sed in majority of analgses
I“Tracks

“Il L )

* Downstream Tracks

Upstream
* Hits in TT and IT/OT

* Tracks from claughters of long lived Particles

* The LHCb tracldng contains two steps: Velo-Track TT ) TI T2 T3
* Track ﬁncling~ Pattem recognition algorithm

* Track ﬁtting = using Kalman filter. Used for track Parameters estimation taking into account

multiple sca’ctering and energy losses. f

*The tracking has to be fast and efficient keeping low fake rate! 2
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| HCb tracki ng, Pattem recognition
algorithms

* Pattern Recognition algorithms find individual hits that compose a track

= VELO Tracking: A stand-alone search is made for straight line track segments in the VELO
20 seeding: A stancLélone search is made for track segments in T stations

* Forward tracking: Starting from seeds in the Velo, tracks are searched in T stations

* Track matching: Starting From aset O1C tracks reconstructed in the Velo and a second set reconstructed

in T stations, track matching attempts to match the tracks in the two sets to one another.

* Downstream tracking: Using tracksin T stations, algorithms implementing this strategy search for
matching TT hits.

Velo tracking T seeding
(VELO tracks) (T tracks)
z V7] T-Tracks 7 | r—
] ownstream
| L.
““ i \t/reaz:ln: fx;: Track Matching tracking
. (Upstream tracks) (Long tracks) (Long tracks) ( -
VELO tracks)
Track Fit
Velo-Track TT TI T2 T3 PV finding
IT+0T
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s Fake long tracks main19 come from wrong matching
between VELO and T stations.

s Thereis no tracking detector in the magnet section,

Verg lOﬂg ICVCF arm.

* Remaining fake tracks from Kalman filter
x*2/dof cut =22%

+ The aim of the Project s to rejec’c fake track at stable
e%’ciency In earlg stages of Processing (?orwarcl tracking}

3 [-Tracks
7!
Upstream "“ 11 m

Fake lon g tracks rejection St
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Deep neural networks architecture

+ The models used in forward tracking are two Feed Forward Neural

Networks.

* As alost function cross—-entropg

L(y,y) =—ylogy — (1 —y)log(l — y)

* Measures the similaritg between expected and Prec:lictecl value

* One way to interpret c:ross—-entropg is to see it as a (minus) |og~li‘<e|ihoocl for the data y under a

model 9’

* Models Parameters are oPtimized to minimize this function (graclient descent algori’clﬁm)

s C-Eischosenas estimator, since it mos’clg leads to fast convergence and good results in terms of

classification error

* As an activation unit the Relu has been chosen.

o efficient gradient Propagation

RelLU

. R(z) =maz(0, z)

* [ast computation: Only coml:)arison, addition and multiplication

10
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Deep neural networks architecture

+ The model were trained using TMVA librarg

» The architectures (clel:)th and hidden unit per lager number) Was the hardest

hgpepparametcr to tune

* NN in recovery IooP : 9 inPut nodes, 2 hidden Iager (16 and 10 unit)

* NN track selection: 16 input nodes, 3 hidden Iager (17,9,5 units)

Classifier response for test and training sample

TMVA

* Sighal (tralning sample)

-ZZ] Background (test sample) * Background (training sample)
= J 1

L Xoimogorov-Smirmov test: signal (Sackground) prebablizy = 9.263 (0.144)

(1N) AN/ dx
»

12 LHCb simulation

UVOScw (S8 100 0.01% /00,00

0 0.1 0.2 03 04 0.5 0.6 0.7 08 08
16,10HL response

o L B recovery looP

(1/N) dNJ dx
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'}//.-' Background (test sampie) | L Background (training sampie) -

:jr.lrnngnmv-.'&-un:r-’ tost: signal (Sackground) probablizy = D012 (081)

Qaks AL

TMVA

ignal (test safmple) « Sighal (tralning sample)

LHCb simulation

WO Scw (5.18): 0.0, 0.00% /(0.0, 0.0)%

L 1 l- 1
0.1 02 0.3 04 05 06 0.7 08 08
17.9,5HL response

Stereo fit
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fake track rejection
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Ghost Probablhtg
For Runl, a quantitg called ghost Probabilitg, based on a neural network

output was used oMinc, such that the analgst could use it as a cut variable.

In Run Il the ghost Probabilit9 is calculated 59 the second Neural Networks -

online.

According to this number algorithm decide whether accept or reject the

track candidate - Final track selection
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This aPProacl’) allows to decrease gl’wost rate from 22% to 14%
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preliminary

== run 2 ghost probability

track fit ¥*/ndf

run 1 ghost probability

|
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Performance of DGGP Neural

Networks for forward tracking

o Neural Networks were trained with MC

and minimum bias events
* Results:

* Increased elcﬁciencg

+ Reduced fake rate considerably

* Both DeeP Neural Networks

contribute to 2% (HLT2) and 0.5%

(HLT?D to timing of forward
tracking algorithm

MC performance v =1.6
2016 w.r.t. 2015 w/ RL | w/oRL
timing HLT1 +0 %
timing HLT?2 +4% | —38%
fake rate —27% | —35%
fake rate HLT1 —-15%
e long +05% | +0.1%
e long from B +02% | —02%
EHLT1 long from B p >3.p7 >0.5 GeV +0.1%

| HCh-TALK-2016-362

1
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T stations

magnet
TT T track
VELO TT1
upstream track
- long track
VELO track
™~ ~~
\

downstream track

Downstream Tracki ng ‘

GtIIT eeds

» The downstream tracking algorithm : |

contains Fo”owing steps (listecl onlg the 4
most iml:)ortant ones from the ML Point <> . |

of view)

No Seed Classifie !

s The algorithm s seeded bg tracks

reconstructed in T stations. I
Is good Seed Yes

* Find matchmg TT hits

> Accept clownstream tracks

' 3
Ca ﬂ (:l ’ (:l atCS Track Classifier
choose the best
track candidate Set of downstream f
or reject all of tracks candidates ‘
them (per each seed) (&
v
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T-Seed classifier

* Downstream tracking contains two classifiers.
* The firstis clesigned to rcject as much fake T-Seeds as Possiblc

» Tracks that cannot be reconstructed bg downstream a[gorithm : due to material

interaction, etc.
* The classifier constrains:
* Keep the egﬁciencg and Purit9 of the selected 5igna| tracks as high as Possible
R Peﬁcormance
* We trained a number of models inclucling linear models, Deep Neural Networks and BDT.

s The training Procec]ure contains model selec’cion) ther Parameters tuning, feature engineering

and overﬁt’ting checking

* The best model according to the area under ROC curve score is Boosted Decision Trees.

16
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H(x) = Za, h(x) 2 boosting

* Using continuous inl:)ut Fea’cures to calcula’ce classhcier response ta|<es too much CPU time.
* We had to ﬁgure out how to speecl—-up the calculations.

* Theideais Prettg simple. We discretise input features space and for each of bin calculate

classhcier FCSPOHSC.

* |nstead o1C calculating response For each ttee wejust need to take one number 1Crom the

|ookuP table.

* The bBDT evolution time is O (1)!

129

2000

29

Bonsal Boosted Decision Trees

0.88

» The table has very coml:)lex structure, no way to fit aPProximation function.

* This idea comes from Prcvious stucﬂg on LHCb HLT [doi:10.1088/1748-0221/8/02,/P02013]
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Bonsal Boosted Decision Trees

How does it work?

000 O X X y Pre&iction
Ooo X 0O o) 0.5
1 !
X 0O .X ))E /Y O 1 O é
X X I o) | tf
, | | 0.5
X

* We clon’t want to generate very long ancl complex i]c~e|se basecl Function
* |nstead we divide feature space into bins
» for each of these bins we calculate classifier response

+ To evaluate classifier response we need to find bin indices and take

COorres Doncling number from the |oo|<u[:> table ;

18



Rlecelver operatmg Ch.aractenstllc Zoomed receiver operating characteristic

%
=

Tue Positive Rate

| — ROC bBDT (area = 0.86) :
| - - no discrimination - ROC.bBI-)T.(an?a =0.86)
- - no discrimination

04 06 ; ;
False Positive Rate 0. . 0.6 0.7
False Positive Rate
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Conclusions

* With help of two Deep Neural Networks LHCb reduced its its rate b
of fake Iongtrack bﬂ about 40%

+ This was obtained without any negative influence on tracking

emcﬁciencg

o The stucly on Downstream tracking algorithm also shows

Promising results

< Currentlg on|9 the first classifier is implementecl as Bonsai

I‘Soosted Decision Trees ancl stuclies on the seconcl classhqer are

ongoing |

20
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Thank you for attention!
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