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Particle tracking in cell imaging and
fluorescence microscopy

Problem: Tracking “key points”, features/descriptors, or random image
patches, as long as possible for different signal-to-noise ratios.

SNR=2 SNR=3 SNR=5 SNR=7|k&s Real sequences

Artificial noisy sequences

* Input: detected/chosen points or patches
* Matching criterion: Sum of Squared Differences (SSD), correlation...
« Output: tracklets of various objects



Objective comparison of particle tracking methods
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Kas 2 Particle tracking is of key importance for quantitative analysis
e of intracellular dynamic processes from time-lapse microscopy
el . image data. Because manually detecting and following large
i " ‘ numbers of individual particles is not feasible, automated

E‘; computational methods have been developed for these tasks
by many groups. Aiming to perform an objective comparison
of methods, we gathered the community and organized an
open competition in which participating teams applied their
own methods independently to a commonly defined data set
Medium including diverse scenarios. Performance was assessed using
¢ commonly defined measures. Although no single method
E performed best across all scenarios, the results revealed clear
g differences between the various approaches, leading to notable

practical conclusions for users and developers.
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Our objective

Problem statement: Random process and especially diffusions can model
the trajectories of particles and molecules in live cell imaging.

e \We propose a statistical test to classify diffusions into 3 groups:
1. Free diffusion (or Brownian motion): the particle evolves freely
in the domain.

2. Superdiffusion: the particle is transported actively via molecular
motors.

3. . the particle is confined in a domain or evolves
in an open but crowded area.

e A commonly used method: Mean Square Displacement (MSD).




A typical simulation

Simulation of free diffusion, superdiffusion and subdiffusion



Data: TIRF microscopy /
vesicle trafficking

Labeling of trajectories in a single micro-patterned (crossbow) cell:
Rab11a-GFP protein in TIRF-2D fluorescence microscopy
(courtesy of UMR 144 CNRS-Institut Curie)



Data: TIRF microscopy /
vesicle trafficking
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TIRF microscopy for exocytosis event analysis
spatial resolution : 200nm
acquisition time: 50 ms/frame



Models,
Stochastic Differential Equations

and
Particle Motion in 2D



Definitions of stochastic
motions in 2D

e Brownian motion (B;);~ is a process defined as:

By =0
Bt_BS NN(O,t—S)

...continuous and non differentiable paths.

e Stochastic differential equation (SDE):
dXt = /,L(Xt, t)dt -+ O'(Xt, t)dBt

where 1(X¢,t) is the drift (deterministic force) and
o(x,t) = oly (random force) is assumed to be isotropic
and stationary.



Trajectory model and SDE

e The observed trajectory of a particle is the (n + 1)-dimensional

vector
X — (Xtoatha « o ,th)

of successive 2D positions where X;, € R? and At =t; —t;_4
is the temporal resolution of the sensor.

e X is generated by the stochastic process (X;)y,<t<¢, solution
of a SDE.



MSD
Mean Square Displacement



Classification of diffusions with MSD

Mean Square Displacement (MSD) to quantify diffusion:

MSD(t) = E(|| X; — Xo||3)

e Free diffusion: ¢t — MSD(t) is a linear function:
E(||B: — Bollz) = ot.

e Superdiffusion: t — MSD(t) grows faster than
a linear function.

o : t— MSD(t) grows slower than
a linear function.



MSD method in practice

We estimate ¢ — MSD(¢) from the trajectory X as follows:

MSD(rAt) = ZHX orr) = X (t)113

n—r

When the lag 7 increases, the performance of the estimator decreases:
e The variance of increments (or distances) increases with 7.
e The terms in the sum are correlated (if overlapping).

e The number of terms in the average decreases as 7 increases.




MSD method in practice

Fit ¢ — MSD(¢) to ¢ — CtP.

Log-log plots of 10 MSD curves of a simulated

2D Brownian motion (0 = 1,n = 30) and parametric

MSD function (8 = 0.1,0.9,1.1,9)
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Classify according the value of 3 > 0 1001 —
(Saxton 1993, Feder 1996): 8Oi _yiiz??

e 3 < 0.1: motionless S :)S/}i/m:ulijisn

e 0.1 < pB<0.9: - a0

e 0.9 < B <1.1: free diffusion 20

e 3 > 1.1: superdiffusion e T

Empirical procedure # Statistical procedure
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An original
Statistical Test Procedure



A new statistical test for dynamics
classification

Our classification procedure is written as a statistical
test:

subdiffusion

Ho: Xt =0By vs Hi:(Xy)iso is a { superdiffusion

e Unlike a conventional binary test, we split Hy into
2 distinct outcomes.

e A non parametric test: under Hy, no parametric
assumption on (X3 )¢~o.



An intuitive test statistic
(or measure)

A measure to distinguish a / superdiffusion from
Brownian motion:

S, = max || X(t;) — X(to)||2

1=0,...,m

“How far from its initial position did the particle
move during the period [t,, — to] ?”

e S, low : the particle stayed close to X;, during [t , t,].

e S, high : the particle moved far from X, , during [to , t,].



Normalized test and motion scaling

Under Hj the distribution of 5,, depends on unknown parameter o.

e We scale S, as follows (& is a consistent estimator of o):

Lemma: Let 6 a consistent estimator of o such that the distribution
of 6 /o does not depend on o. Then, under Hy, the distribution of T,
does not depend on o neither on the duration of observation t,, — tg.
It depends only on n.

e The quantile ¢,(«) of order « of T, does not depend on o.

e ), has probability 1 — « to lie in the region:

« 84
n\ o <Tn<n<1__)
q(2)— =4 2



The test procedure in a few lines

Estimation off-line of quantiles g, () (once for all) with Monte-Carlo
simulations for any trajectory length (n points) and a given « value.

Our test procedure (for an individual trajectory):

1. Estimation of o0 02 = = > | Xiae — Xi—1)adll3

2. Classification of motions according to the decision rule:

> T, € [gn(a/2),q,(1 — a/2)], then (X;)i>0 is a
Brownian motion.

> T, < qn(a/2) then (X;)i~0 is a
> T, > qn(1 — a/2) then (X;);~0 is a superdiffusion.



The test procedure in a few lines

Estimation off-line of quantiles g, () (once for all) with Monte-Carlo
simulations for any trajectory length (n points) and a given « value.

Trajectory length
Quantiles (¢« =5%) | n =10 | n =30 | n =100 | asymp
qn(a/2) 0.725 0.754 0.785 0.834
gn(l — a/2) 2.626 2.794 2.873 2.940

Brownian motion.

> T, < qn(a/2) then (X;)iso is a subdiffusion.
> T, > qn(1 — a/2) then (X;);~0 is a superdiffusion.




The test procedure in a few lines

Estimation off-line of quantiles g, () (once for all) with Monte-Carlo
simulations for any trajectory length (n points) and a given « value.

Our test procedure (for an individual trajectory):

1. Estimation of o0 02 = = > | Xiae — Xi—1)adll3

2. Classification of motions according to the decision rule:

> T, € [gn(a/2),q,(1 — a/2)], then (X;)i>0 is a
Brownian motion.

> T, < qn(a/2) then (X;)i~0 is a
> T, > qn(1 — a/2) then (X;);~0 is a superdiffusion.



Experimental Results



Evaluation on synthetic trajectories

Two well-known parametric superdiffusion and subdiffusion processes:

e Superdiffusion: Brownian motion + constant drift

dX] = vidt +odB! i=1,2.

o . Ornstein-Uhlenbeck process (A determines the size of
the confinement domain)

dX! = —\NX; — 6;)dt + odB! i=1,2.

A few typical numbers:

e Length of trajectories: n = 30.

1

e Superdiffusion: o Subdiffusion:
At = 0.1s At = 0.1s B
B }vam Y 2o boai=os

_ o

|v]| 4.6 pm.s—



Evaluation on synthetic trajectories

Our test procedure (o = 5%) MSD method

20

15+
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Simulated trajectories of Brownian, Brownian with drift
and Ornstein-Uhlenbeck
(cyan trajectories are labeled as Motionless).



Evaluation on synthetic trajectories

Confusion matrices of our

test procedure

Test label Brownian | Brownian Brownian | Brownian
+ drift + drift
Ground truth without noise with noise
Brownian 94.6 3 2.7 04.2 1.3 4.5
Brownian + drift 12.7 87.3 0 19.7 80.3 0
26.6 0 73.4 19.8 0 80.2

e Results obtained with N = 10000 simulated trajectories of each
process with parameters given previously.

e For the noisy case, we set o, = 0.2 to get oV At/oerr = 1.

e In our results, 1.3% of the simulated Brownian trajectories with
noise were labeled as Brownian + drift.




Evaluation on real 2D-TIRF fluorescence
microscopy images (Rab11-GFP protein)

e Sequences of fluorescent images (TIRF microscopy) depicting the traffic of
Rab11-GFP protein in micro-patterned cells (crossbow shape): 600 frames
of size 256 x 240 pixels (1 pixel = 160nm) acquired with At = 0.1s.

e Trajectories computed with the ICY tracker (icy.bioimageanalysis.org).
— N. Chenouard et al., “Multiple Hypothesis Tracking for Cluttered Biological Image Sequences,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2736—-3750, Nov. 2013

— F. de Chaumont et al., “lcy: an open bioimage informatics platform for extended reproducible
research,” Nat. Methods, vol. 9, no. 7, pp. 690-696, Jul. 2012.

e Short trajectories 10-2

are discarded. T
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Evaluation on real 2D-TIRF fluorescence
microscopy images (Rab11-GFP protein)

Our test procedure

Method Our test procedure MSD method
Label
Brownian 61% 14%
Subdiffusion 32% 59%
Superdiffusion 7% 20%
Motionless 0 7%




Evaluation on real 2D-TIRF fluorescence
microscopy images (Rab11-GFP protein)

Our test procedure

MSD method

Density

Metha
Labe
Browni
Subdiffu
Superdiff

—
9
(o))

L

Estimation of the density of the diffusion
coefficient from labeled Brownian
trajectories
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Messages to take away

> Qur test procedure is able to reliably classify
vs Brownian motion unlike MSD (n > 10).

> Qur test is non-parametric and statistically consistent.

> Our test procedure is calibrated to process short and long
trajectories: the decision thresholds depend on n.




Messages to take away

> Our test procedure is able to reliably classify
vs Brownian motion unlike MSD (n > 10).

> Our test is non-parametric and statistically consistent.

> Our test procedure is calibrated to process short and long
trajectories: the decision thresholds depend on n.

Glutamate receptor subunit 1 of AMPA receptor trajectories

F utu re Wo rk (SPT-PALM) moving on the neuronal dendrite surface

> Multiple testing for false alarm number
reduction: analysis of population of
trajectories.

> Investigation in 3D imaging, super-resolution
imaging & SPT-PALM.

> Detection of motion regime changes
(e.g. exocytosis: transport — thetering
— docking)




Messages to take away

> Qur test procedure is able to reliably classify

vs Brownian motion unlike MSD (n > 10).

> Our test is non-parametric and statistically consistent.

> Our test procedure is calibrated to process short and long
trajectories: the decision thresholds depend on n.

Future work

> Multiple testing for false alarm number
reduction: analysis of population of
trajectories.

> Investigation in 3D imaging, super-resolution
imaging & SPT-PALM.

> Detection of motion regime changes
(e.g. exocytosis: transport — thetering
— docking)

Glutamate receptor subunit 1 of AMPA receptor trajectories
(SPT-PALM) moving on the neuronal dendrite surface
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Thank you for your
attention !

References

Berry, H., & Chaté, H. (2014). Physical Review E, 89(2), 022708.

Bressloff, P. C., & Newby, J. M. (2013). Reviews of Modern Physics, 85(1), 135.
Feder, T. J., et al. (1996). Biophysical J., 7T0(6), 2767.

Michalet, X. (2010). Physical Review E, 82(4), 041914,

Monnier, N., et al. (2012). Biophysical J., 103(3), 616-626.

Saxton, M. J., et al. (1997). Ann. Rev. Biophys. Biomol. Struct., 26, 373-399.
Shaffer, J. P. (1980). The Annals of Statistics, 1342-1347.



