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Problem: Tracking “key points”, features/descriptors, or random image 
patches, as long as possible for different signal-to-noise ratios. 
 
 
 
 
 
 
 

 
•  Input: detected/chosen points or patches 
•  Matching criterion: Sum of Squared Differences (SSD), correlation…  
•  Output: tracklets of various objects  

  Particle tracking in cell imaging and    
  fluorescence microscopy 
 
 

Artificial noisy sequences

Real sequences





  Our objective 
 
 

Problem statement: Random process and especially di↵usions can model

the trajectories of particles and molecules in live cell imaging.

• We propose a statistical test to classify di↵usions into 3 groups:

1. Free di↵usion (or Brownian motion): the particle evolves freely

in the domain.

2. Superdi↵usion: the particle is transported actively via molecular

motors.

3. Subdi↵usion: the particle is confined in a domain or evolves

in an open but crowded area.

• A commonly used method: Mean Square Displacement (MSD).



  A typical simulation   
  

Simulation of free di↵usion, superdi↵usion and subdi↵usion

   
 
 



  Data: TIRF microscopy /  
  vesicle trafficking 
 
 

Labeling of trajectories in a single micro-patterned (crossbow) cell:

Rab11a-GFP protein in TIRF-2D fluorescence microscopy

(courtesy of UMR 144 CNRS-Institut Curie)
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  Models,  
Stochastic Differential Equations 

and 
 Particle Motion in 2D 

 
 



  Definitions of stochastic  
  motions in 2D 
 
 • Brownian motion (Bt)t>0 is a process defined as:

B0 = 0

Bt �Bs ⇠ N (0, t� s)

...continuous and non di↵erentiable paths.

• Stochastic di↵erential equation (SDE):

dXt = µ(Xt, t)dt+ �(Xt, t)dBt

where µ(Xt, t) is the drift (deterministic force) and

�(x, t) = �I2 (random force) is assumed to be isotropic

and stationary.



  Trajectory model and SDE  
 
 

• The observed trajectory of a particle is the (n+ 1)-dimensional

vector

X = (Xt0 , Xt1 , . . . , Xtn)

of successive 2D positions where Xti 2 R2
and �t = ti � ti�1

is the temporal resolution of the sensor.

• X is generated by the stochastic process (Xt)t0ttn solution

of a SDE.



  MSD  
Mean Square Displacement 

 



  Classification of diffusions with MSD 
 
 

• Free di↵usion: t 7! MSD(t) is a linear function:

E(kBt �B0k22) = �t.

• Superdi↵usion: t 7! MSD(t) grows faster than

a linear function.

• Subdi↵usion: t 7! MSD(t) grows slower than

a linear function.

Mean Square Displacement (MSD) to quantify di↵usion:

MSD(t) = E(kXt �X0k22)



  MSD method in practice 
 
 

r = 2 r = 3

We estimate t ! MSD(t) from the trajectory X as follows:

[
MSD(r�t) =

1

n� r

n�rX

i=1

kX(ti+r)�X(ti)k22

When the lag r increases, the performance of the estimator decreases:

• The variance of increments (or distances) increases with r.

• The terms in the sum are correlated (if overlapping).

• The number of terms in the average decreases as r increases.



  MSD method in practice 
 
 

Empirical procedure 6= Statistical procedure

Log-log plots of 10 MSD curves of a simulated

2D Brownian motion (� = 1, n = 30) and parametric

MSD function (� = 0.1, 0.9, 1.1, 9)

Fit t 7! [
MSD(t) to t 7! Ct� .

Classify according the value of � > 0
(Saxton 1993, Feder 1996):

• � < 0.1: motionless

• 0.1 < � < 0.9: subdi↵usion

• 0.9 < � < 1.1: free di↵usion

• � > 1.1: superdi↵usion



  An original  
Statistical Test Procedure 

 



  A new statistical test for dynamics     
  classification 
 
 Our classification procedure is written as a statistical

test:

H0 : Xt = �Bt vs H1 : (Xt)t>0 is a

⇢
subdi↵usion

superdi↵usion

• Unlike a conventional binary test, we split H1 into

2 distinct outcomes.

• A non parametric test: under H1, no parametric

assumption on (Xt)t>0.



  An intuitive test statistic  
  (or measure)  
 
 

A measure to distinguish a subdi↵usion / superdi↵usion from

Brownian motion:

Sn = max

i=0,...,n
kX(ti)�X(t0)k2

“How far from its initial position did the particle
move during the period [tn � t0] ?”

• Sn low : the particle stayed close to Xt0 during [t0 , tn].

• Sn high : the particle moved far from Xt0 during [t0 , tn].



  Normalized test and motion scaling  
   
 
 

Lemma: Let �̂ a consistent estimator of � such that the distribution

of �̂/� does not depend on �. Then, under H0, the distribution of Tn

does not depend on � neither on the duration of observation tn � t0.
It depends only on n.

Under H0 the distribution of Sn depends on unknown parameter �.

• We scale Sn as follows (�̂ is a consistent estimator of �):

Tn =
Sn

�̂
p
tn � t0

• The quantile qn(↵) of order ↵ of Tn does not depend on �.

• Tn has probability 1� ↵ to lie in the region:

qn

⇣↵
2

⌘
 Tn  qn

⇣
1� ↵

2

⌘



  The test procedure in a few lines  
   
 
 Estimation o↵-line of quantiles qn(↵) (once for all) with Monte-Carlo
simulations for any trajectory length (n points) and a given ↵ value.

Our test procedure (for an individual trajectory):

1. Estimation of �: b�2 = 1
2n�t

Pn
i=1 kXi�t �X(i�1)�tk22

2. Classification of motions according to the decision rule:

B Tn 2 [qn(↵/2), qn(1� ↵/2)], then (Xt)t>0 is a

Brownian motion.

B Tn < qn(↵/2) then (Xt)t>0 is a subdi↵usion.

B Tn > qn(1� ↵/2) then (Xt)t>0 is a superdi↵usion.
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  Experimental Results 
 



  Evaluation on synthetic trajectories 
 
 

• Subdi↵usion:

�t = 0.1 s
� = 5 s�1

�
7! ��t = 0.5

A few typical numbers:

• Length of trajectories: n = 30.

• Superdi↵usion:

�t = 0.1 s
�2 = 4µm2.s�1

kvk = 4.6µm.s�1

9
=

; 7! kvk
p
�t

�
= 0.72

Two well-known parametric superdi↵usion and subdi↵usion processes:

• Superdi↵usion: Brownian motion + constant drift

dXi
t = vidt+ �dBi

t i = 1, 2.

• Subdi↵usion: Ornstein-Uhlenbeck process (� determines the size of
the confinement domain)

dXi
t = ��(Xt � ✓i)dt+ �dBi

t i = 1, 2.
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  Evaluation on synthetic trajectories 
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Simulated trajectories of Brownian, Brownian with drift
and Ornstein-Uhlenbeck

(cyan trajectories are labeled as Motionless).

MSD methodOur test procedure (↵ = 5%)



  Evaluation on synthetic trajectories 
 
 

Test label Brownian Brownian Ornstein Brownian Brownian Ornstein
+ drift Uhlenbeck + drift Uhlenbeck

Ground truth without noise with noise

Brownian 94.6 3 2.7 94.2 1.3 4.5

Brownian + drift 12.7 87.3 0 19.7 80.3 0

Ornstein-Uhlenbeck 26.6 0 73.4 19.8 0 80.2

Confusion matrices of our

test procedure

• Results obtained with N = 10000 simulated trajectories of each

process with parameters given previously.

• For the noisy case, we set �err = 0.2 to get �
p
�t/�err = 1.

• In our results, 1.3% of the simulated Brownian trajectories with

noise were labeled as Brownian + drift.



  Evaluation on real 2D-TIRF fluorescence     
  microscopy images (Rab11-GFP protein) 
 
 • Sequences of fluorescent images (TIRF microscopy) depicting the tra�c of

Rab11-GFP protein in micro-patterned cells (crossbow shape): 600 frames

of size 256⇥ 240 pixels (1 pixel = 160nm) acquired with �t = 0.1s.

• Trajectories computed with the ICY tracker (icy.bioimageanalysis.org).

– N. Chenouard et al., “Multiple Hypothesis Tracking for Cluttered Biological Image Sequences,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2736–3750, Nov. 2013

– F. de Chaumont et al., “Icy: an open bioimage informatics platform for extended reproducible
research,” Nat. Methods, vol. 9, no. 7, pp. 690–696, Jul. 2012.

• Short trajectories

are discarded.



  Evaluation on real 2D-TIRF fluorescence     
  microscopy images (Rab11-GFP protein) 
 
 MSD methodOur test procedure

Method Our test procedure MSD method
Label

Brownian 61% 14%
Subdi↵usion 32% 59%
Superdi↵usion 7% 20%
Motionless 0 7%
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  microscopy images (Rab11-GFP protein) 
 
 MSD methodOur test procedure

Method Our test procedure MSD method
Label

Brownian 61% 14%
Subdi↵usion 32% 59%
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Estimation of the density of the di↵usion

coe�cient from labeled Brownian

trajectories



 
 
 
 
 
 

      
 
 
 

  Messages to take away     
 
 
B Our test procedure is able to reliably classify subdi↵usion

vs Brownian motion unlike MSD (n � 10).

B Our test is non-parametric and statistically consistent.

B Our test procedure is calibrated to process short and long
trajectories: the decision thresholds depend on n.



 
 
 
 
 
 

      
 
 
 

  Messages to take away     
 
 

  Future work     
 
 

Glutamate receptor subunit 1 of AMPA receptor trajectories

(SPT-PALM) moving on the neuronal dendrite surface

B Our test procedure is able to reliably classify subdi↵usion

vs Brownian motion unlike MSD (n � 10).

B Our test is non-parametric and statistically consistent.

B Our test procedure is calibrated to process short and long
trajectories: the decision thresholds depend on n.

B Multiple testing for false alarm number

reduction: analysis of population of

trajectories.

B Investigation in 3D imaging, super-resolution

imaging & SPT-PALM.

B Detection of motion regime changes

(e.g. exocytosis: transport 7! thetering

7! docking)
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