

n_TOF Report

Daniela Macina n_TOF Run Coordinator CERN

53rd INTC Meeting, 29-20 June 2016

Measurements in EAR1

PS Technical Stop 36 hrs

No full time beam due to activities in the other area

PROTON DELIVERY FROM PS

With the ⁷²Ge, we successfully end the measurement of the (n,γ) cross sections of the isotopes ⁷⁰Ge, ⁷²Ge, ⁷³Ge, ⁷⁴Ge, ⁷⁶Ge which is of importance for the astrophysical slow neutron capture process

Region of interest for astrophysics

Measurement supported by an ERC Starting Grant (PI Lederer)

Courtesy C. Lederer

²³⁵U(n,f) in EAR1

²³⁵U(n,f) cross-section might be systematically overestimated in the 10-30 keV region. This cross section is important as often used as:

- a reference in cross-section measurements of major and minor actinides.
- to measure neutron fluxes (MACS..).
- can have a significant impact on fast critical reactor and sub-critical ADS.

²³⁵U(n,f) cross section measured together with the reference reactions ${}^{6}Li(n,t)$ and ${}^{10}B(n,\alpha)$

Silicon detectors stack (5x5 cm^2 and 200 μ m thick)

Test in view of the measurement of 235 U(n,f) vs H(n,n)H in EAR1 for $E_n > 20$ MeV

Proton energy released in one PRT scintillator

- Possible to reach energies of few hundreds MeV (effect of γ-flash less severe than expected)
- PMT gating allows to go close to 1 GeV
- Test in summer 2017:
 - More compact and efficient design
 - Fine tuning and final configuration

Courtesy C. Massimi & R. Nolte

Test Neutron Imaging station in EAR2

Station resolution = 6.5 μm

Big collimator (8 cm diameter), 2×10⁷ neutrons/pulse @ thermal peak

Test Neutron Imaging station in EAR2

AD target (~2h of measurement time)

Courtesy M. Calviani & F. Mingrone

²⁶Al (n,p) and ²⁶Al(n, α) in EAR2

Prediction of the galactic ²⁶Al abundance

Courtesy C. Lederer & S. Lonsdale

Preliminary data of the neutron flux at EAR2 for the big collimator measured with two MicroMegas detectors equipped with:

- 117.6 µg/cm² ²³⁵U onto 30 µm thick Al foil and
- 20 nm of ${}^{10}B_4C$ onto 18 μ m thick Al layer.

Chamber placed at the exit of the beam pipe (nominal position of SiMon2)

Courtesy M. Sabaté Gilarte

gamma-ray energy spectra and multiplicities from the ²³⁵U(n,f) using Spectrometer for Exotic Fission Fragments

Courtesy G. Smith

STEFF in EAR2

STEFF Measures Fission Gamma Rays in Environment With Raw Signal/Background ~0.001

Courtesy G. Smith

- Again a successful year for the n_TOF data taking
- All experiments have collected the requested number of protons
- First preliminary results show very good quality of the data recorded