Nuclear moment studies of short-lived excited states towards the Island of Inversion. g factor of ²⁸Mg (2⁺) using TDRIV on H-like ions.

G. Georgiev¹, A.E. Stuchbery², D.L. Balabanski³, J. Benito⁴, A. Blazhev⁵, A. Boukhari¹, T. Braunroth⁵, B.A. Brown⁶,
E. Clement⁷, D. Cullen⁸, A. Dewald⁵, L. Fraile⁴, Ch. Fransen⁵, S. Freeman⁸, M. Gilles⁸, L. Gaffney⁹, K. Gladnishki¹⁰,
A. Goasduff¹¹, G. Hackman¹², J. Henderson¹², J. Jolie⁵, T. Kibedi², T. Kröll¹³, A.Kusoglu³, G.J. Lane², J. Ljungvall¹,
R. Lozeva¹, I. Matea¹⁴, T. J. Mertzimekis¹⁶, A.J. Mitchell², K. Moschner⁵, D. Mücher¹⁵, C. Müller-Gatermann⁵,
B.S. Nara Singh⁸, N. Pietralla¹³, G. Rainovski¹⁰, D. Ralet¹, D. Sharp⁸, C. Sotty¹⁷, N. Warr⁵, V.Werner¹³,
J.Wiederhold¹³, D.T. Yordanov¹⁴ and the MINIBALL collaboration

 CSNSM, Orsay, France; 2. ANU, Canberra, Australia; 3. ELI-NP, Bucharest, Romania; 4. GFN, Universidad Complutense, Madrid, Spain; 5. IKP Cologne, Germany; 6. NSCL, MSU, East-Lansing, USA; 7. GANIL, Caen, France; 8. University of Manchester, UK; 9. ISOLDE, CERN, Switzerland; 10. University of Sofia, Bulgaria; 11. LNL, Legnaro, Italy; 12. TRIUMF, Vancouver, Canada; 13. IKP, TU Darmstadt, Germany; 14. IPN, Orsay, France; 15. University of Guelph, Canada; 16. University of Athens, Greece; 17. HH - NIPNE, Bucharest-Magurele, Romania

> Spokesperson(s): Georgi Georgiev (<u>georgi.georgiev@csnsm.in2p3.fr</u>) and Andrew Stuchbery (<u>Andrew.Stuchbery@anu.edu.au</u>) Local contact: Liam Gaffney (<u>liam.gaffney@cern.ch</u>)

Nuclear moments – Why?

Nuclei with non-zero spin have magnetic dipole moment $\mu = gI [\mu_N]$

Sources of nuclear magnetism:

- orbital movement of charged particles;
- intrinsic spin of the nucleons.
- Free-nucleons g factors:

 $g_s^{\pi} = 5.585$ $g_{\ell}^{\pi} = 1$ $g_s^{\nu} = -3.826$ $g_{\ell}^{\nu} = 0$

Magnetic moment of a nucleus:

$$\vec{\mu} = \sum_{k=1}^{A} g_{\ell}^{(k)} \vec{\ell}^{(k)} + \sum_{k=1}^{A} g_{s}^{(k)} \vec{s}^{(k)}$$

- the contribution of every nucleon

Liquid-drop model:

$$g = Z/A$$

²⁸Mg – what is so exciting?

- Mg isotopes and the "Island of Inversion"
 - ³²Mg first identified with high B(E2) and low E_x (2⁺)

Ground-state's moments in the Mg isotopes:

→ s.p. states, not sensitive to configuration mixing but to the odd-nucleon orbit e.g. ³¹Mg – magnetic moment of 1/2⁺ state well reproduced even if its energy (*sd* model space) is > 1 MeV off

Even-even Mg's (2⁺ states)

- ²⁶Mg inconsistent values in literature;
- big uncertainties from TF measurements
- ²⁴Mg (N=Z) and ²⁶Mg (vd_{5/2} subshell)
 rather "simple" theory cases
- ²⁸Mg ³²Mg real tests for the interactions

²⁸Mg – importance (or not?) of the N=16 sub-shell gap at Z=12?

New estimations for the borders of the "Island of Inversion"
 T. Otsuka *et al.*, INPC 2016 presentation. <u>http://inpc2016.com/abstracts/pdf/abstract_345.pdf</u>

 \rightarrow necessity to include *pf* admixtures for reproducing excited states in ³⁰Mg

TDRIV on H-like ions

TDRIV - Interaction between the **nuclear spins** (oriented by the reaction) with the **electron spins** (random) for **well defined time** (plunger)

H-like ions \rightarrow well defined magnetic field (1s): B_{ns}

$$B_{ns} = 16.7 \frac{Z^3}{n^3} \left[1 + (\frac{Z}{84})^{2.5} \right]$$

Experimental requirements

- ²⁸Mg (~5.5 MeV/u) beam from HIE-ISOLDE:
 →1x10⁶ 5x10⁵ pps
- Miniball spectrometer
 - \rightarrow detectors @ ~90° angles
 - \rightarrow ~7% efficiency @ 1.4 MeV
 - \rightarrow Cologne Miniball plunger
- ~1000 p γ "useful" coinc. per "segment"/distance
- 20 plunger distances

Beam-time request

	ISOLDE yields [p/µC]	Expected yield @ Miniball [pps]	Shifts
²⁸ Mg (20.9 h)	6x10 ⁶	5x10⁵ - 1x10⁶	25
²² Ne (stable)	from EBIS	~ 1x10 ⁷	1 week

→ Total 25 shifts RIB + 1 week stable beam requested for obtaining g(2⁺, ²⁸Mg) with ~5% accuracy

TAC comments

INTC #	Exp no.	setup (red: new)	Shifts (setup not counted)	isotopes	safety input (red: new elements)	Radioprotection and safety	Beam intensity/purity, targets-ion sources	General implantation and setup	REX, HIE-ISOLDE	Comme nts
INTC-P-478		Miniball	25	28Mg; 22Ne	Miniball		28Mg: >6e6/uC (RILIS gain vs DB); 28Al: 1e6/uC <mark>OK</mark>		Already done at REX-ISOLDE. Most probably charge state 9+. Energy ok: 5.5MeV/u	

Counts in p-y coincidences in Miniball

- 10⁶ pps ²⁸Mg (5.5 MeV/u)
 - → 10³ p-γ produced/"segment"/hour (1/8 of CD, 28° < θ <40°)
 x 7% Miniball efficiency
 - \rightarrow 560 p- γ detected
 - out of which 20% in "useful correlation angles"
 - \rightarrow 110 p- γ /hour per best Ge detectors positions

Miniball plunger availability?

Dear Georgi,

Our mechanics workshop is manufacturing the parts for the Miniball plunger at the moment and we will finish it (including a test run in Cologne to guarantee that it works stable and reliable) definitely in time for experiments that take place next year. Thus you can submit your proposal assuming the plunger is available.

Best regards, Christoph

News from IKP Cologne (27/10/2016)

Miniball experimental efficiency (~90° configuration)

Licorne @ MINORCA

Electron-nuclear spin interaction in vacuum

$$W(\theta_p, \theta_\gamma) = \sum_{k,q} \sqrt{2k+1} \rho_{kq}(\theta_p) G_k F_k Q_k D_{q0}^{k^*}(\phi_\gamma - \phi_p, \theta_\gamma, 0)$$

$$G_k(t) = \sum_{F,F'} C_{FF'} \exp(-\omega_{FF'}t)$$

(0 \le |G_k| \le 1) F,F'

attenuation coefficients – a measure for the electron – nuclear spin interaction

$$\omega_{FF'} = \left\{ F(F+1) - F'(F'+1) \right\} \frac{\mu_N B}{2\hbar J} g$$

interaction frequency - depends on I and J - single frequency for J=1/2

Time Dependent Recoil In Vacuum (stable beams)

magnetic field for H-like ions – can be calculated from first principles!
pure H-like charge state could not be achieved (~15 %)

TDRIV – radioactive beam geometry

A.E. Stuchbery et al., Phys. Rev. C71, 047302 (2005).

The same oscillation frequency can be found even after the reset foil (with some damping of the amplitude due to the hard-core attenuation)

Particle – γ correlations

