Beta decay of ¹¹Be

A.A. Ciemny¹, W. Dominik¹, Z. Janas¹, Ł. Janiak¹, M. Karny¹, A. Korgul¹, A. Kubiela¹, C. Mazzocchi¹, K. Miernik¹,
M. Pfützner¹, M. Pomorski¹, S. Sharma¹, N. Sokołowska¹, H. Fynbo², J.H. Jensen², K. Riisager², M.J. Borge^{3,4},
O. Tengblad⁴, A. Bezbakh⁵, A. Fomichev⁵, G. Kamiński⁵

¹ Faculty of Physics, University of Warsaw, Warsaw, Poland
² Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
³ ISOLDE-CERN, Geneve, Switzerland
⁴ Instituto de Estructura de la Materia, CSIC, Madrid, Spain
⁵ JINR, Dubna, Russia

Spokespersons: C. Mazzocchi, K. Riisager Contact person: K. Johnston

ISOLDE and Neutron Time-of-Flight Experiments Committee Meeting November 3rd, 2016

The physics case

- ✓ One-neutron halo nuclei:
 - $\beta^{-}p$ decay possible:
 - low S_n (Q_{βp}=782 keV S_n)
 - s.p. behaviour of halo nuclei
 - βp decay via continuum states in daughter

		⁸ C	٩C	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴C	¹⁵ C	¹⁶ C	¹⁷ C	¹⁸ C
	⁶ B	⁷ B	⁸ В	⁰₿	¹⁰ B	11B	¹² B	¹³ B	¹⁴ B	¹⁵ B	¹⁶ B	¹⁷ B
	⁵Be	⁶ Be	⁷ Be	⁵Be	⁰Be	¹⁰ Be	¹¹ Be	¹² Be	¹³ Be	¹⁴ Be	¹⁵ Be	¹⁶ Be
³ Li	⁴Li	⁵Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li	"Li	¹² Li	¹³ Li		
	³Не	⁴He	⁵He	۴He	⁷ He	⁸ Не	⁹ He	¹⁰ He				
ΊH	²H	зН	⁴H	⁵H	6Н	۶H						
	¹ n											
	¹ N											
ιH	sН		⁴ H		еH	7H						

- ✓ Only known nucleus to decay by $\beta^{-}p$
 - several theoretical descriptions available
 - branching ratio ($2.5 \cdot 10^{-8} 10^{-6}$) and energy spectrum ($E_{cm} = 150 200 \text{ keV}$)
- ✓ β p decay of ¹¹Be: discretised continuum direct decay (DCDD) formalism
 - initial state = s-wave neutron in potential of inert ¹⁰Be core
 - final state = continuum wave function of s-wave proton in the 10 Be potential (Coulomb + nuclear)

- DCDD calculations
- R-matrix calculation
- --- α decay of the level included (width 0 and 100 keV)

¹¹*B*

¹¹*B*

- ✓ Surprisingly large $b(\beta p)$:
 - decay must proceed through new s.p. resonance in ¹¹B strongly fed in β decay
 - B(GT) ~ 3 (free neutron decay halo neutron decaying into single-proton state)
- ✓ Goal:
 - first direct observation of its βp decay
 - βp energy spectrum measurement
 - GT strength distribution
 - test of calculations

- ✓ ¹¹Be beam @ISOLDE:
 - 1 GeV protons on UCx target + RILIS + GPS + HIE-ISOLDE
 - bunched beam
 - implanted into active volume of OTPC detector

- ✓ ¹¹Be beam @ISOLDE with OTPC:
 - low-density gas (He: ≥98%; N₂: ≤2%) @ atmospheric pressure
 - possible to observe low-energy protons (down to 100 keV)

Beamtime estimate and request

- ✓ ¹¹Be yield:
 - ~10⁴ ¹¹Be ions/s (achieved a few 10⁵ ions/s at REX-ISOLDE with a 1.9 μA proton beam, UCx target, RILIS ion source and GPS separator)
 - 1 bunch/30 s
- ✓ β p rate: ~**300 \betap in 6 days** of beam-time
 - confirmation of the branching ratio value (normalising the number of βp to the number of $\beta \alpha$)
 - measurement of the βp energy spectrum
 - βα branching to be remeasured (elsewhere) with the same set-up

Requested shifts:

6 days (18 shifts) of ¹¹Be beam at 7.0 A·MeV at the HIE-ISOLDE second beamline

one day (3 shifts) for beam tuning

Total: 7 days (21 shifts)

